/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file SFMExample_SmartFactor.cpp * @brief A structure-from-motion problem on a simulated dataset, using smart projection factor * @author Duy-Nguyen Ta * @author Jing Dong * @author Frank Dellaert */ /** * A structure-from-motion example with landmarks * - The landmarks form a 10 meter cube * - The robot rotates around the landmarks, always facing towards the cube */ // For loading the data #include "SFMdata.h" // Camera observations of landmarks (i.e. pixel coordinates) will be stored as Point2 (x, y). #include // In GTSAM, measurement functions are represented as 'factors'. // The factor we used here is SmartProjectionPoseFactor. Every smart factor represent a single landmark, // The SmartProjectionPoseFactor only optimize the pose of camera, not the calibration, // The calibration should be known. #include // Also, we will initialize the robot at some location using a Prior factor. #include // When the factors are created, we will add them to a Factor Graph. As the factors we are using // are nonlinear factors, we will need a Nonlinear Factor Graph. #include // Finally, once all of the factors have been added to our factor graph, we will want to // solve/optimize to graph to find the best (Maximum A Posteriori) set of variable values. // GTSAM includes several nonlinear optimizers to perform this step. Here we will use a // trust-region method known as Powell's Degleg #include // The nonlinear solvers within GTSAM are iterative solvers, meaning they linearize the // nonlinear functions around an initial linearization point, then solve the linear system // to update the linearization point. This happens repeatedly until the solver converges // to a consistent set of variable values. This requires us to specify an initial guess // for each variable, held in a Values container. #include #include using namespace std; using namespace gtsam; // Make the typename short so it looks much cleaner typedef gtsam::SmartProjectionPoseFactor SmartFactor; /* ************************************************************************* */ int main(int argc, char* argv[]) { // Define the camera calibration parameters Cal3_S2::shared_ptr K(new Cal3_S2(50.0, 50.0, 0.0, 50.0, 50.0)); // Define the camera observation noise model noiseModel::Isotropic::shared_ptr measurementNoise = noiseModel::Isotropic::Sigma(2, 1.0); // one pixel in u and v // Create the set of ground-truth landmarks and poses vector points = createPoints(); vector poses = createPoses(); // Create a factor graph NonlinearFactorGraph graph; // Simulated measurements from each camera pose, adding them to the factor graph for (size_t j = 0; j < points.size(); ++j) { // every landmark represent a single landmark, we use shared pointer to init the factor, and then insert measurements. SmartFactor::shared_ptr smartfactor(new SmartFactor()); for (size_t i = 0; i < poses.size(); ++i) { // generate the 2D measurement SimpleCamera camera(poses[i], *K); Point2 measurement = camera.project(points[j]); // call add() function to add measurement into a single factor, here we need to add: // 1. the 2D measurement // 2. the corresponding camera's key // 3. camera noise model // 4. camera calibration smartfactor->add(measurement, i, measurementNoise, K); } // insert the smart factor in the graph graph.push_back(smartfactor); } // Add a prior on pose x0. This indirectly specifies where the origin is. // 30cm std on x,y,z 0.1 rad on roll,pitch,yaw noiseModel::Diagonal::shared_ptr poseNoise = noiseModel::Diagonal::Sigmas( (Vector(6) << Vector3::Constant(0.3), Vector3::Constant(0.1))); graph.push_back(PriorFactor(0, poses[0], poseNoise)); // Because the structure-from-motion problem has a scale ambiguity, the problem is // still under-constrained. Here we add a prior on the second pose x1, so this will // fix the scale by indicating the distance between x0 and x1. // Because these two are fixed, the rest of the poses will be also be fixed. graph.push_back(PriorFactor(1, poses[1], poseNoise)); // add directly to graph graph.print("Factor Graph:\n"); // Create the initial estimate to the solution // Intentionally initialize the variables off from the ground truth Values initialEstimate; Pose3 delta(Rot3::rodriguez(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20)); for (size_t i = 0; i < poses.size(); ++i) initialEstimate.insert(i, poses[i].compose(delta)); initialEstimate.print("Initial Estimates:\n"); // Optimize the graph and print results Values result = DoglegOptimizer(graph, initialEstimate).optimize(); result.print("Final results:\n"); // A smart factor represent the 3D point inside the factor, not as a variable. // The 3D position of the landmark is not explicitly calculated by the optimizer. // To obtain the landmark's 3D position, we use the "point" method of the smart factor. Values landmark_result; for (size_t j = 0; j < points.size(); ++j) { // The output of point() is in boost::optional, as sometimes // the triangulation operation inside smart factor will encounter degeneracy. boost::optional point; // The graph stores Factor shared_ptrs, so we cast back to a SmartFactor first SmartFactor::shared_ptr smart = dynamic_pointer_cast(graph[j]); if (smart) { point = smart->point(result); if (point) // ignore if boost::optional return NULL landmark_result.insert(j, *point); } } landmark_result.print("Landmark results:\n"); return 0; } /* ************************************************************************* */