#include #include #include using namespace boost::python; using namespace gtsam; using namespace gtsam::noiseModel; // Wrap around pure virtual class Base // See: http://www.boost.org/doc/libs/1_59_0/libs/python/doc/tutorial/doc/html/python/exposing.html#python.class_virtual_functions struct BaseWrap : Base, wrapper { void print (const std::string & name="") const { this->get_override("print")(); } bool equals (const Base & expected, double tol=1e-9) const { return this->get_override("equals")(); } Vector whiten (const Vector & v) const { return this->get_override("whiten")(); } Matrix Whiten (const Matrix & v) const { return this->get_override("Whiten")(); } Vector unwhiten (const Vector & v) const { return this->get_override("unwhiten")(); } double distance (const Vector & v) const { return this->get_override("distance")(); } void WhitenSystem (std::vector< Matrix > &A, Vector &b) const { this->get_override("WhitenSystem")(); } void WhitenSystem (Matrix &A, Vector &b) const { this->get_override("WhitenSystem")(); } void WhitenSystem (Matrix &A1, Matrix &A2, Vector &b) const { this->get_override("WhitenSystem")(); } void WhitenSystem (Matrix &A1, Matrix &A2, Matrix &A3, Vector &b) const { this->get_override("WhitenSystem")(); } }; BOOST_PYTHON_MODULE(libnoiseModel_python) { // NOTE: Don't know if it's really necessary to register the matrices convertion here. import_array(); NumpyEigenConverter::register_converter(); NumpyEigenConverter::register_converter(); NumpyEigenConverter::register_converter(); NumpyEigenConverter::register_converter(); NumpyEigenConverter::register_converter(); NumpyEigenConverter::register_converter(); NumpyEigenConverter::register_converter(); NumpyEigenConverter::register_converter(); NumpyEigenConverter::register_converter(); NumpyEigenConverter::register_converter(); NumpyEigenConverter::register_converter(); NumpyEigenConverter::register_converter(); NumpyEigenConverter::register_converter(); NumpyEigenConverter::register_converter(); NumpyEigenConverter::register_converter(); NumpyEigenConverter::register_converter(); NumpyEigenConverter::register_converter(); NumpyEigenConverter::register_converter(); NumpyEigenConverter::register_converter(); NumpyEigenConverter::register_converter(); class_("Base") .def("print", pure_virtual(&Base::print)) ; class_, bases >("Gaussian", no_init) .def("SqrtInformation",&Gaussian::SqrtInformation) .staticmethod("SqrtInformation") .def("Information",&Gaussian::Information) .staticmethod("Information") .def("Covariance",&Gaussian::Covariance) .staticmethod("Covariance") ; class_ >("Diagonal", no_init) .def("Sigmas",&Diagonal::Sigmas) .staticmethod("Sigmas") .def("Variances",&Diagonal::Variances) .staticmethod("Variances") .def("Precisions",&Diagonal::Precisions) .staticmethod("Precisions") ; class_ >("Isotropic", no_init) .def("Sigma",&Isotropic::Sigma) .staticmethod("Sigma") .def("Variance",&Isotropic::Variance) .staticmethod("Variance") .def("Precision",&Isotropic::Precision) .staticmethod("Precision") ; class_ >("Unit", no_init) .def("Create",&Unit::Create) .staticmethod("Create") ; }