/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file SFMExample_SmartFactorPCG.cpp * @brief Version of SFMExample_SmartFactor that uses Preconditioned Conjugate Gradient * @author Frank Dellaert */ // For an explanation of these headers, see SFMExample_SmartFactor.cpp #include "SFMdata.h" #include // These extra headers allow us a LM outer loop with PCG linear solver (inner loop) #include #include #include using namespace std; using namespace gtsam; // Make the typename short so it looks much cleaner typedef SmartProjectionPoseFactor SmartFactor; // create a typedef to the camera type typedef PinholePose Camera; /* ************************************************************************* */ int main(int argc, char* argv[]) { // Define the camera calibration parameters Cal3_S2::shared_ptr K(new Cal3_S2(50.0, 50.0, 0.0, 50.0, 50.0)); // Define the camera observation noise model noiseModel::Isotropic::shared_ptr measurementNoise = noiseModel::Isotropic::Sigma(2, 1.0); // one pixel in u and v // Create the set of ground-truth landmarks and poses vector points = createPoints(); vector poses = createPoses(); // Create a factor graph NonlinearFactorGraph graph; // Simulated measurements from each camera pose, adding them to the factor graph for (size_t j = 0; j < points.size(); ++j) { // every landmark represent a single landmark, we use shared pointer to init the factor, and then insert measurements. SmartFactor::shared_ptr smartfactor(new SmartFactor(measurementNoise, K)); for (size_t i = 0; i < poses.size(); ++i) { // generate the 2D measurement Camera camera(poses[i], K); Point2 measurement = camera.project(points[j]); // call add() function to add measurement into a single factor, here we need to add: smartfactor->add(measurement, i); } // insert the smart factor in the graph graph.push_back(smartfactor); } // Add a prior on pose x0. This indirectly specifies where the origin is. // 30cm std on x,y,z 0.1 rad on roll,pitch,yaw noiseModel::Diagonal::shared_ptr noise = noiseModel::Diagonal::Sigmas( (Vector(6) << Vector3::Constant(0.1), Vector3::Constant(0.3)).finished()); graph.addPrior(0, poses[0], noise); // Fix the scale ambiguity by adding a prior graph.addPrior(1, poses[0], noise); // Create the initial estimate to the solution Values initialEstimate; Pose3 delta(Rot3::Rodrigues(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20)); for (size_t i = 0; i < poses.size(); ++i) initialEstimate.insert(i, poses[i].compose(delta)); // We will use LM in the outer optimization loop, but by specifying "Iterative" below // We indicate that an iterative linear solver should be used. // In addition, the *type* of the iterativeParams decides on the type of // iterative solver, in this case the SPCG (subgraph PCG) LevenbergMarquardtParams parameters; parameters.linearSolverType = NonlinearOptimizerParams::Iterative; parameters.absoluteErrorTol = 1e-10; parameters.relativeErrorTol = 1e-10; parameters.maxIterations = 500; PCGSolverParameters::shared_ptr pcg = boost::make_shared(); pcg->preconditioner_ = boost::make_shared(); // Following is crucial: pcg->setEpsilon_abs(1e-10); pcg->setEpsilon_rel(1e-10); parameters.iterativeParams = pcg; LevenbergMarquardtOptimizer optimizer(graph, initialEstimate, parameters); Values result = optimizer.optimize(); // Display result as in SFMExample_SmartFactor.run result.print("Final results:\n"); Values landmark_result; for (size_t j = 0; j < points.size(); ++j) { SmartFactor::shared_ptr smart = // boost::dynamic_pointer_cast(graph[j]); if (smart) { boost::optional point = smart->point(result); if (point) // ignore if boost::optional return nullptr landmark_result.insert(j, *point); } } landmark_result.print("Landmark results:\n"); cout << "final error: " << graph.error(result) << endl; cout << "number of iterations: " << optimizer.iterations() << endl; return 0; } /* ************************************************************************* */