/** * @file testLoopyBelief.cpp * @brief * @author Duy-Nguyen Ta * @date Oct 11, 2013 */ #include #include #include #include #include #include #include using namespace std; using namespace boost; using namespace gtsam; /** * Loopy belief solver for graphs with only binary and unary factors */ class LoopyBelief { /** Star graph struct for each node, containing * - the star graph itself * - the product of original unary factors so we don't have to recompute it * later, and * - the factor indices of the corrected belief factors of the neighboring * nodes */ typedef std::map CorrectedBeliefIndices; struct StarGraph { DiscreteFactorGraph::shared_ptr star; CorrectedBeliefIndices correctedBeliefIndices; DecisionTreeFactor::shared_ptr unary; VariableIndex varIndex_; StarGraph(const DiscreteFactorGraph::shared_ptr& _star, const CorrectedBeliefIndices& _beliefIndices, const DecisionTreeFactor::shared_ptr& _unary) : star(_star), correctedBeliefIndices(_beliefIndices), unary(_unary), varIndex_(*_star) {} void print(const std::string& s = "") const { cout << s << ":" << endl; star->print("Star graph: "); for (const auto& [key, _] : correctedBeliefIndices) { cout << "Belief factor index for " << key << ": " << correctedBeliefIndices.at(key) << endl; } if (unary) unary->print("Unary: "); } }; typedef std::map StarGraphs; StarGraphs starGraphs_; ///< star graph at each variable public: /** Constructor * Need all discrete keys to access node's cardinality for creating belief * factors * TODO: so troublesome!! */ LoopyBelief(const DiscreteFactorGraph& graph, const std::map& allDiscreteKeys) : starGraphs_(buildStarGraphs(graph, allDiscreteKeys)) {} /// print void print(const std::string& s = "") const { cout << s << ":" << endl; for (const auto& [key, _] : starGraphs_) { starGraphs_.at(key).print("Node " + std::to_string(key) + ":"); } } /// One step of belief propagation DiscreteFactorGraph::shared_ptr iterate( const std::map& allDiscreteKeys) { static const bool debug = false; static DiscreteConditional::shared_ptr dummyCond; // unused by-product of elimination DiscreteFactorGraph::shared_ptr beliefs(new DiscreteFactorGraph()); std::map > allMessages; // Eliminate each star graph for (const auto& [key, _] : starGraphs_) { // cout << "***** Node " << key << "*****" << endl; // initialize belief to the unary factor from the original graph DecisionTreeFactor::shared_ptr beliefAtKey; // keep intermediate messages to divide later std::map messages; // eliminate each neighbor in this star graph one by one for (const auto& [neighbor, _] : starGraphs_.at(key).correctedBeliefIndices) { DiscreteFactorGraph subGraph; for (size_t factor : starGraphs_.at(key).varIndex_[neighbor]) { subGraph.push_back(starGraphs_.at(key).star->at(factor)); } if (debug) subGraph.print("------- Subgraph:"); DiscreteFactor::shared_ptr message; std::tie(dummyCond, message) = EliminateDiscrete(subGraph, Ordering{neighbor}); // store the new factor into messages messages.insert(make_pair(neighbor, message)); if (debug) message->print("------- Message: "); // Belief is the product of all messages and the unary factor // Incorporate new the factor to belief if (!beliefAtKey) beliefAtKey = std::dynamic_pointer_cast(message); else beliefAtKey = std::make_shared( (*beliefAtKey) * (*std::dynamic_pointer_cast(message))); } if (starGraphs_.at(key).unary) beliefAtKey = std::make_shared( (*beliefAtKey) * (*starGraphs_.at(key).unary)); if (debug) beliefAtKey->print("New belief at key: "); // normalize belief double sum = 0.0; for (size_t v = 0; v < allDiscreteKeys.at(key).second; ++v) { DiscreteValues val; val[key] = v; sum += (*beliefAtKey)(val); } // TODO(kartikarcot): Check if this makes sense string sumFactorTable; for (size_t v = 0; v < allDiscreteKeys.at(key).second; ++v) { sumFactorTable = sumFactorTable + " " + std::to_string(sum); } DecisionTreeFactor sumFactor(allDiscreteKeys.at(key), sumFactorTable); if (debug) sumFactor.print("denomFactor: "); beliefAtKey = std::make_shared((*beliefAtKey) / sumFactor); if (debug) beliefAtKey->print("New belief at key normalized: "); beliefs->push_back(beliefAtKey); allMessages[key] = messages; } // Update corrected beliefs VariableIndex beliefFactors(*beliefs); for (const auto& [key, _] : starGraphs_) { std::map messages = allMessages[key]; for (const auto& [neighbor, _] : starGraphs_.at(key).correctedBeliefIndices) { DecisionTreeFactor correctedBelief = (*std::dynamic_pointer_cast( beliefs->at(beliefFactors[key].front()))) / (*std::dynamic_pointer_cast( messages.at(neighbor))); if (debug) correctedBelief.print("correctedBelief: "); size_t beliefIndex = starGraphs_.at(neighbor).correctedBeliefIndices.at(key); starGraphs_.at(neighbor).star->replace( beliefIndex, std::make_shared(correctedBelief)); } } if (debug) print("After update: "); return beliefs; } private: /** * Build star graphs for each node. */ StarGraphs buildStarGraphs( const DiscreteFactorGraph& graph, const std::map& allDiscreteKeys) const { StarGraphs starGraphs; VariableIndex varIndex(graph); ///< access to all factors of each node for (const auto& [key, _] : varIndex) { // initialize to multiply with other unary factors later DecisionTreeFactor::shared_ptr prodOfUnaries; // collect all factors involving this key in the original graph DiscreteFactorGraph::shared_ptr star(new DiscreteFactorGraph()); for (size_t factorIndex : varIndex[key]) { star->push_back(graph.at(factorIndex)); // accumulate unary factors if (graph.at(factorIndex)->size() == 1) { if (!prodOfUnaries) prodOfUnaries = std::dynamic_pointer_cast( graph.at(factorIndex)); else prodOfUnaries = std::make_shared( *prodOfUnaries * (*std::dynamic_pointer_cast( graph.at(factorIndex)))); } } // add the belief factor for each neighbor variable to this star graph // also record the factor index for later modification KeySet neighbors = star->keys(); neighbors.erase(key); CorrectedBeliefIndices correctedBeliefIndices; for (Key neighbor : neighbors) { // TODO: default table for keys with more than 2 values? string initialBelief; for (size_t v = 0; v < allDiscreteKeys.at(neighbor).second - 1; ++v) { initialBelief = initialBelief + "0.0 "; } initialBelief = initialBelief + "1.0"; star->push_back( DecisionTreeFactor(allDiscreteKeys.at(neighbor), initialBelief)); correctedBeliefIndices.insert(make_pair(neighbor, star->size() - 1)); } starGraphs.insert(make_pair( key, StarGraph(star, correctedBeliefIndices, prodOfUnaries))); } return starGraphs; } }; /* ************************************************************************* */ TEST_UNSAFE(LoopyBelief, construction) { // Variables: Cloudy, Sprinkler, Rain, Wet DiscreteKey C(0, 2), S(1, 2), R(2, 2), W(3, 2); // Map from key to DiscreteKey for building belief factor. // TODO: this is bad! std::map allKeys{{0, C}, {1, S}, {2, R}, {3, W}}; // Build graph DecisionTreeFactor pC(C, "0.5 0.5"); DiscreteConditional pSC(S | C = "0.5/0.5 0.9/0.1"); DiscreteConditional pRC(R | C = "0.8/0.2 0.2/0.8"); DecisionTreeFactor pSR(S & R, "0.0 0.9 0.9 0.99"); DiscreteFactorGraph graph; graph.push_back(pC); graph.push_back(pSC); graph.push_back(pRC); graph.push_back(pSR); graph.print("graph: "); LoopyBelief solver(graph, allKeys); solver.print("Loopy belief: "); // Main loop for (size_t iter = 0; iter < 20; ++iter) { cout << "==================================" << endl; cout << "iteration: " << iter << endl; DiscreteFactorGraph::shared_ptr beliefs = solver.iterate(allKeys); beliefs->print(); } } /* ************************************************************************* */ int main() { TestResult tr; return TestRegistry::runAllTests(tr); } /* ************************************************************************* */