/** * @file FactorGraph-inl.h * This is a template definition file, include it where needed (only!) * so that the appropriate code is generated and link errors avoided. * @brief Factor Graph Base Class * @author Carlos Nieto * @author Frank Dellaert * @author Alireza Fathi */ #pragma once #include #include #include #include #include #include #include #include #include #include "Ordering.h" #include "FactorGraph.h" // trick from some reading group #define FOREACH_PAIR( KEY, VAL, COL) BOOST_FOREACH (boost::tie(KEY,VAL),COL) using namespace std; namespace gtsam { /* ************************************************************************* */ template template FactorGraph::FactorGraph(const BayesNet& bayesNet) { typename BayesNet::const_iterator it = bayesNet.begin(); for(; it != bayesNet.end(); it++) { sharedFactor factor(new Factor(*it)); push_back(factor); } } /* ************************************************************************* */ template void FactorGraph::print(const string& s) const { cout << s << endl; printf("size: %d\n", (int) size()); for (int i = 0; i < factors_.size(); i++) { stringstream ss; ss << "factor " << i << ":"; if (factors_[i] != NULL) factors_[i]->print(ss.str()); } } /* ************************************************************************* */ template bool FactorGraph::equals (const FactorGraph& fg, double tol) const { /** check whether the two factor graphs have the same number of factors_ */ if (factors_.size() != fg.size()) return false; /** check whether the factors_ are the same */ for (size_t i = 0; i < factors_.size(); i++) { // TODO: Doesn't this force order of factor insertion? sharedFactor f1 = factors_[i], f2 = fg.factors_[i]; if (f1 == NULL && f2 == NULL) continue; if (f1 == NULL || f2 == NULL) return false; if (!f1->equals(*f2, tol)) return false; } return true; } /* ************************************************************************* */ template size_t FactorGraph::nrFactors() const { int size_ = 0; for (const_iterator factor = factors_.begin(); factor != factors_.end(); factor++) if (*factor != NULL) size_++; return size_; } /* ************************************************************************* */ template void FactorGraph::push_back(sharedFactor factor) { factors_.push_back(factor); // add the actual factor if (factor==NULL) return; int i = factors_.size() - 1; // index of factor associateFactor(i, factor); } /* ************************************************************************* */ template void FactorGraph::push_back(const FactorGraph& factors) { const_iterator factor = factors.begin(); for (; factor!= factors.end(); factor++) push_back(*factor); } /* ************************************************************************* */ template void FactorGraph::replace(int index, sharedFactor factor) { if(index >= factors_.size()) throw invalid_argument(boost::str(boost::format( "Factor graph does not contain a factor with index %d.") % index)); //if(factors_[index] == NULL) // throw invalid_argument(boost::str(boost::format( // "Factor with index %d is NULL." % index))); if(factors_[index] != NULL) { // Remove this factor from its variables' index lists list keys(factor->keys()); BOOST_FOREACH(string key, keys) { Indices::iterator indices = indices_.find(key); if(indices != indices_.end()) { indices->second.remove(index); } else { throw invalid_argument(boost::str(boost::format( "Factor graph inconsistency! Factor %d involves variable %s but " "is missing from its factor index list.") % index % key)); } } } // Replace the factor factors_[index] = factor; associateFactor(index, factor); } /* ************************************************************************* */ template Ordering FactorGraph::keys() const { Ordering keys; transform(indices_.begin(), indices_.end(), back_inserter(keys), _Select1st()); return keys; } /* ************************************************************************* */ /** * Call colamd given a column-major symbolic matrix A * @param n_col colamd arg 1: number of rows in A * @param n_row colamd arg 2: number of columns in A * @param nrNonZeros number of non-zero entries in A * @param columns map from keys to a sparse column of non-zero row indices */ template boost::shared_ptr colamd(int n_col, int n_row, int nrNonZeros, const map >& columns) { // Convert to compressed column major format colamd wants it in (== MATLAB format!) vector initialOrder; int Alen = nrNonZeros*30; /* colamd arg 3: size of the array A TODO: use Tim's function ! */ int * A = new int[Alen]; /* colamd arg 4: row indices of A, of size Alen */ int * p = new int[n_col + 1]; /* colamd arg 5: column pointers of A, of size n_col+1 */ p[0] = 0; int j = 1; int count = 0; typedef typename map >::const_iterator iterator; for(iterator it = columns.begin(); it != columns.end(); it++) { const Key& key = it->first; const vector& column = it->second; initialOrder.push_back(key); BOOST_FOREACH(int i, column) A[count++] = i; // copy sparse column p[j] = count; // column j (base 1) goes from A[j-1] to A[j]-1 j+=1; } double* knobs = NULL; /* colamd arg 6: parameters (uses defaults if NULL) */ int stats[COLAMD_STATS]; /* colamd arg 7: colamd output statistics and error codes */ // call colamd, result will be in p ************************************************* /* TODO: returns (1) if successful, (0) otherwise*/ ::colamd(n_row, n_col, Alen, A, p, knobs, stats); // ********************************************************************************** delete [] A; // delete symbolic A // Convert elimination ordering in p to an ordering boost::shared_ptr result(new Ordering); for(int j = 0; j < n_col; j++) result->push_back(initialOrder[j]); delete [] p; // delete colamd result vector return result; } /* ************************************************************************* */ template boost::shared_ptr FactorGraph::getOrdering_() const{ // A factor graph is really laid out in row-major format, each factor a row // Below, we compute a symbolic matrix stored in sparse columns. typedef string Key; // default case with string keys map > columns; // map from keys to a sparse column of non-zero row indices int nrNonZeros = 0; // number of non-zero entries int n_row = factors_.size(); /* colamd arg 1: number of rows in A */ // loop over all factors = rows for (int i = 0; i < n_row; i++) { if (factors_[i]==NULL) continue; list keys = factors_[i]->keys(); BOOST_FOREACH(Key key, keys) columns[key].push_back(i); nrNonZeros+= keys.size(); } int n_col = (int)(columns.size()); /* colamd arg 2: number of columns in A */ if(n_col == 0) return boost::shared_ptr(new Ordering); // empty ordering else return colamd(n_col, n_row, nrNonZeros, columns); } /* ************************************************************************* */ template Ordering FactorGraph::getOrdering() const { return *getOrdering_(); // empty ordering } /* ************************************************************************* */ /** O(1) */ /* ************************************************************************* */ template list FactorGraph::factors(const string& key) const { Indices::const_iterator it = indices_.find(key); return it->second; } /* ************************************************************************* */ /** find all non-NULL factors for a variable, then set factors to NULL */ /* ************************************************************************* */ template vector > FactorGraph::findAndRemoveFactors(const string& key) { vector found; Indices::iterator it = indices_.find(key); if (it == indices_.end()) throw(invalid_argument ("FactorGraph::findAndRemoveFactors invalid key: " + key)); list *indices_ptr; // pointer to indices list in indices_ map indices_ptr = &(it->second); BOOST_FOREACH(int i, *indices_ptr) { if(factors_[i] == NULL) continue; // skip NULL factors found.push_back(factors_[i]); // add to found remove(i); // set factor to NULL. } return found; } /* ************************************************************************* */ template void FactorGraph::associateFactor(int index, sharedFactor factor) { list keys = factor->keys(); // get keys for factor BOOST_FOREACH(string key, keys){ // for each key push i onto list Indices::iterator it = indices_.find(key); // old list for that key (if exists) if (it==indices_.end()){ // there's no list yet list indices(1,index); // so make one indices_.insert(make_pair(key,indices)); // insert new indices into factorMap } else { list *indices_ptr = &(it->second); // get the list indices_ptr->push_back(index); // add the index i to it } } } /* ************************************************************************* * template map FactorGraph::findMinimumSpanningTree() const { SDGraph g = gtsam::toBoostGraph, sharedFactor>(*this); // find minimum spanning tree vector p_map(boost::num_vertices(g)); prim_minimum_spanning_tree(g, &p_map[0]); // convert edge to string pairs map tree; BoostVertexIterator itVertex = boost::vertices(g).first; for (vector::iterator vi = p_map.begin(); vi!=p_map.end(); itVertex++, vi++) { string key = boost::get(boost::vertex_name, g, *itVertex); string parent = boost::get(boost::vertex_name, g, *vi); // printf("%s parent: %s\n", key.c_str(), parent.c_str()); tree.insert(make_pair(key, parent)); } return tree; } template void FactorGraph::split(map tree, FactorGraph& Ab1, FactorGraph& Ab2) const { BOOST_FOREACH(sharedFactor factor, factors_){ if (factor->keys().size() > 2) throw(invalid_argument("split: only support factors with at most two keys")); if (factor->keys().size() == 1) { Ab1.push_back(factor); continue; } string key1 = factor->keys().front(); string key2 = factor->keys().back(); // if the tree contains the key if (tree.find(key1) != tree.end() && tree[key1].compare(key2) == 0 || tree.find(key2) != tree.end() && tree[key2].compare(key1) == 0) Ab1.push_back(factor); else Ab2.push_back(factor); } } /* ************************************************************************* */ /* find factors and remove them from the factor graph: O(n) */ /* ************************************************************************* */ template boost::shared_ptr removeAndCombineFactors(FactorGraph& factorGraph, const string& key) { vector > found = factorGraph.findAndRemoveFactors(key); boost::shared_ptr new_factor(new Factor(found)); return new_factor; } /* ************************************************************************* */ template FactorGraph combine(const FactorGraph& fg1, const FactorGraph& fg2) { // create new linear factor graph equal to the first one FactorGraph fg = fg1; // add the second factors_ in the graph fg.push_back(fg2); return fg; } }