/** * @file testConstrainedLinearFactorGraph.cpp * @author Alex Cunningham */ #include #include #include "ConstrainedLinearFactorGraph.h" #include "LinearFactorGraph.h" #include "smallExample.h" using namespace gtsam; using namespace std; /* ************************************************************************* */ TEST( ConstrainedLinearFactorGraph, elimination1 ) { // get the graph ConstrainedLinearFactorGraph fg = createSingleConstraintGraph(); // verify construction of the graph CHECK(fg.size() == 2); // eliminate x Ordering ord; ord.push_back("x"); ChordalBayesNet::shared_ptr cbn = fg.eliminate(ord); //verify changes and output CHECK(fg.size() == 1); CHECK(cbn->size() == 1); Matrix Ax1(2, 2); Ax1(0, 0) = 1.0; Ax1(0, 1) = 2.0; Ax1(1, 0) = 2.0; Ax1(1, 1) = 1.0; Matrix Ay1 = eye(2) * 10; Vector b2 = Vector_(2, 1.0, 2.0); ConstrainedConditionalGaussian expectedCCG1(b2, Ax1, "y", Ay1); CHECK(expectedCCG1.equals(*(cbn->get("x")))); Matrix Ap(2,2); Ap(0, 0) = 1.0; Ap(0, 1) = -2.0; Ap(1, 0) = -2.0; Ap(1, 1) = 1.0; Ap = 33.3333 * Ap; Vector bp = Vector_(2, 0.0, -10.0); LinearFactor expectedLF("y", Ap, bp); CHECK(expectedLF.equals(*(fg[0]), 1e-4)); // eliminate y Ordering ord2; ord2.push_back("y"); cbn = fg.eliminate(ord2); CHECK(fg.size() == 0); Matrix Ar(2,2); Ar(0, 0) = 74.5356; Ar(0, 1) = -59.6285; Ar(1, 0) = 0.0; Ar(1, 1) = 44.7214; Vector br = Vector_(2, 8.9443, 4.4721); ConditionalGaussian expected2(br, Ar); CHECK(expected2.equals(*(cbn->get("y")))); } /* ************************************************************************* */ TEST( ConstrainedLinearFactorGraph, optimize ) { // create graph ConstrainedLinearFactorGraph fg = createSingleConstraintGraph(); // perform optimization Ordering ord; ord.push_back("y"); ord.push_back("x"); FGConfig actual = fg.optimize(ord); FGConfig expected; expected.insert("x", Vector_(2, 1.0, -1.0)); expected.insert("y", Vector_(2, 0.2, 0.1)); CHECK(expected.size() == actual.size()); CHECK(assert_equal(expected["x"], actual["x"], 1e-4)); CHECK(assert_equal(expected["y"], actual["y"], 1e-4)); } /* ************************************************************************* */ TEST( ConstrainedLinearFactorGraph, optimize2 ) { // create graph ConstrainedLinearFactorGraph fg = createSingleConstraintGraph(); // perform optimization Ordering ord; ord.push_back("x"); ord.push_back("y"); FGConfig actual = fg.optimize(ord); FGConfig expected; expected.insert("x", Vector_(2, 1.0, -1.0)); expected.insert("y", Vector_(2, 0.2, 0.1)); CHECK(expected.size() == actual.size()); CHECK(assert_equal(expected["x"], actual["x"], 1e-4)); // Fails here: gets x = (-3, 1) CHECK(assert_equal(expected["y"], actual["y"], 1e-4)); } /* ************************************************************************* */ TEST( ConstrainedLinearFactorGraph, is_constrained ) { // very simple check ConstrainedLinearFactorGraph fg; CHECK(!fg.is_constrained("x")); // create simple graph Vector b = Vector_(2, 0.0, 0.0); LinearFactor::shared_ptr f1(new LinearFactor("x", eye(2), "y", eye(2), b)); LinearFactor::shared_ptr f2(new LinearFactor("z", eye(2), "w", eye(2), b)); LinearConstraint::shared_ptr f3(new LinearConstraint("y", eye(2), "z", eye(2), b)); fg.push_back(f1); fg.push_back(f2); fg.push_back_constraint(f3); CHECK(fg.is_constrained("y")); CHECK(fg.is_constrained("z")); CHECK(!fg.is_constrained("x")); CHECK(!fg.is_constrained("w")); } /* ************************************************************************* */ TEST( ConstrainedLinearFactorGraph, get_constraint_separator ) { ConstrainedLinearFactorGraph fg1 = createMultiConstraintGraph(); ConstrainedLinearFactorGraph fg2 = createMultiConstraintGraph(); LinearConstraint::shared_ptr lc1 = fg1.constraint_at(0); LinearConstraint::shared_ptr lc2 = fg1.constraint_at(1); vector actual1 = fg1.find_constraints_and_remove("y"); CHECK(fg1.size() == 2); CHECK(actual1.size() == 1); CHECK((*actual1.begin())->equals(*lc1)); vector actual2 = fg2.find_constraints_and_remove("x"); CHECK(fg2.size() == 1); CHECK(actual2.size() == 2); CHECK((*actual1.begin())->equals(*lc1)); LinearConstraint::shared_ptr act = *(++actual2.begin()); CHECK(act->equals(*lc2)); } /* ************************************************************************* */ TEST( ConstrainedLinearFactorGraph, update_constraints ) { // create a graph ConstrainedLinearFactorGraph fg1 = createMultiConstraintGraph(); // process constraints - picking first constraint on x vector constraints = fg1.find_constraints_and_remove("x"); CHECK(constraints.size() == 2); CHECK(fg1.size() == 1); // both constraints removed LinearConstraint::shared_ptr primary = constraints[0]; LinearConstraint::shared_ptr updatee = constraints[1]; fg1.update_constraints("x", constraints, primary); CHECK(fg1.size() == 2); // induced constraint added back // expected induced constraint Matrix Ar(2,2); Ar(0, 0) = -16.6666; Ar(0, 1) = -6.6666; Ar(1, 0) = 10.0; Ar(1, 1) = 0.0; Matrix A22(2,2); A22(0,0) = 1.0 ; A22(0,1) = 1.0; A22(1,0) = 1.0 ; A22(1,1) = 2.0; Vector br = Vector_(2, 0.0, 5.0); LinearConstraint::shared_ptr exp(new LinearConstraint("y", Ar, "z", A22, br)); // evaluate CHECK(assert_equal(*(fg1.constraint_at(0)), *exp, 1e-4)); } /* ************************************************************************* */ TEST( ConstrainedLinearFactorGraph, find_constraints_and_remove ) { // constraint 1 Matrix A11(2,2); A11(0,0) = 1.0 ; A11(0,1) = 2.0; A11(1,0) = 2.0 ; A11(1,1) = 1.0; Matrix A12(2,2); A12(0,0) = 10.0 ; A12(0,1) = 0.0; A12(1,0) = 0.0 ; A12(1,1) = 10.0; Vector b1(2); b1(0) = 1.0; b1(1) = 2.0; LinearConstraint::shared_ptr lc1(new LinearConstraint("x", A11, "y", A12, b1)); // constraint 2 Matrix A21(2,2); A21(0,0) = 3.0 ; A21(0,1) = 4.0; A21(1,0) = -1.0 ; A21(1,1) = -2.0; Matrix A22(2,2); A22(0,0) = 1.0 ; A22(0,1) = 1.0; A22(1,0) = 1.0 ; A22(1,1) = 2.0; Vector b2(2); b2(0) = 3.0; b2(1) = 4.0; LinearConstraint::shared_ptr lc2(new LinearConstraint("x", A21, "z", A22, b2)); // construct the graph ConstrainedLinearFactorGraph fg1; fg1.push_back_constraint(lc1); fg1.push_back_constraint(lc2); // constraints on x vector expected1, actual1; expected1.push_back(lc1); expected1.push_back(lc2); actual1 = fg1.find_constraints_and_remove("x"); CHECK(fg1.size() == 0); CHECK(expected1.size() == actual1.size()); vector::const_iterator exp1, act1; for(exp1=expected1.begin(), act1=actual1.begin(); act1 != actual1.end(); ++act1, ++exp1) { CHECK((*exp1)->equals(**act1)); } } /* ************************************************************************* */ TEST( ConstrainedLinearFactorGraph, eliminate_multi_constraint ) { ConstrainedLinearFactorGraph fg = createMultiConstraintGraph(); // eliminate the constraint ConstrainedConditionalGaussian::shared_ptr cg1 = fg.eliminate_constraint("x"); CHECK(cg1->size() == 1); CHECK(fg.size() == 2); // eliminate the induced constraint ConstrainedConditionalGaussian::shared_ptr cg2 = fg.eliminate_constraint("y"); CHECK(fg.size() == 1); CHECK(cg2->size() == 1); // eliminate the linear factor ConditionalGaussian::shared_ptr cg3 = fg.eliminate_one("z"); CHECK(fg.size() == 0); CHECK(cg3->size() == 0); // solve piecewise FGConfig actual; Vector act_z = cg3->solve(actual); actual.insert("z", act_z); CHECK(assert_equal(act_z, Vector_(2, -4.0, 5.0), 1e-4)); Vector act_y = cg2->solve(actual); actual.insert("y", act_y); CHECK(assert_equal(act_y, Vector_(2, -0.1, 0.4), 1e-4)); Vector act_x = cg1->solve(actual); CHECK(assert_equal(act_x, Vector_(2, -2.0, 2.0), 1e-4)); } /* ************************************************************************* */ TEST( ConstrainedLinearFactorGraph, optimize_multi_constraint ) { ConstrainedLinearFactorGraph fg = createMultiConstraintGraph(); // solve the graph Ordering ord; ord.push_back("x"); ord.push_back("y"); ord.push_back("z"); FGConfig actual = fg.optimize(ord); // verify FGConfig expected; expected.insert("x", Vector_(2, -2.0, 2.0)); expected.insert("y", Vector_(2, -0.1, 0.4)); expected.insert("z", Vector_(2, -4.0, 5.0)); CHECK(expected.size() == actual.size()); CHECK(assert_equal(expected["x"], actual["x"], 1e-4)); CHECK(assert_equal(expected["y"], actual["y"], 1e-4)); CHECK(assert_equal(expected["z"], actual["z"], 1e-4)); } /* ************************************************************************* */ // OLD TESTS - should be ported into the new structure when possible /* ************************************************************************* */ /* ************************************************************************* */ //TEST( ConstrainedLinearFactorGraph, basic ) //{ // ConstrainedLinearFactorGraph fg = createConstrainedLinearFactorGraph(); // // // expected equality factor // Vector v1(2); v1(0)=1.;v1(1)=2.; // LinearConstraint::shared_ptr f1(new LinearConstraint(v1, "x0")); // // // expected normal linear factor // Matrix A21(2,2); // A21(0,0) = -10 ; A21(0,1) = 0; // A21(1,0) = 0 ; A21(1,1) = -10; // // Matrix A22(2,2); // A22(0,0) = 10 ; A22(0,1) = 0; // A22(1,0) = 0 ; A22(1,1) = 10; // // Vector b(2); // b(0) = 20 ; b(1) = 30; // // LinearFactor::shared_ptr f2(new LinearFactor("x0", A21, "x1", A22, b)); // // CHECK(f2->equals(*(fg[0]))); // CHECK(f1->equals(*(fg.eq_at(0)))); //} //TEST ( ConstrainedLinearFactorGraph, copy ) //{ // LinearFactorGraph lfg = createLinearFactorGraph(); // LinearFactor::shared_ptr f1 = lfg[0]; // LinearFactor::shared_ptr f2 = lfg[1]; // LinearFactor::shared_ptr f3 = lfg[2]; // LinearFactor::shared_ptr f4 = lfg[3]; // // ConstrainedLinearFactorGraph actual(lfg); // // ConstrainedLinearFactorGraph expected; // expected.push_back(f1); // expected.push_back(f2); // expected.push_back(f3); // expected.push_back(f4); // // CHECK(actual.equals(expected)); //} // //TEST( ConstrainedLinearFactorGraph, equals ) //{ // // basic equality test // ConstrainedLinearFactorGraph fg = createConstrainedLinearFactorGraph(); // ConstrainedLinearFactorGraph fg2 = createConstrainedLinearFactorGraph(); // CHECK( fg.equals(fg2) ); // // // ensuring that equality factors are compared // LinearFactor::shared_ptr f2 = fg[0]; // get a linear factor from existing graph // ConstrainedLinearFactorGraph fg3; // fg3.push_back(f2); // CHECK( !fg3.equals(fg) ); //} // //TEST( ConstrainedLinearFactorGraph, size ) //{ // LinearFactorGraph lfg = createLinearFactorGraph(); // ConstrainedLinearFactorGraph fg1(lfg); // // CHECK(fg1.size() == lfg.size()); // // ConstrainedLinearFactorGraph fg2 = createConstrainedLinearFactorGraph(); // // CHECK(fg2.size() == 2); //} // //TEST( ConstrainedLinearFactorGraph, is_constrained ) //{ // ConstrainedLinearFactorGraph fg = createConstrainedLinearFactorGraph(); // // CHECK(fg.is_constrained("x0")); // CHECK(!fg.is_constrained("x1")); //} // //TEST( ConstrainedLinearFactorGraph, optimize ) //{ // ConstrainedLinearFactorGraph fg1 = createConstrainedLinearFactorGraph(); // ConstrainedLinearFactorGraph fg2 = createConstrainedLinearFactorGraph(); // // FGConfig expected = createConstrainedConfig(); // // Ordering ord1; // ord1.push_back("x0"); // ord1.push_back("x1"); // // Ordering ord2; // ord2.push_back("x1"); // ord2.push_back("x0"); // // FGConfig actual1 = fg1.optimize(ord1); // FGConfig actual2 = fg2.optimize(ord2); // // CHECK(actual1.equals(expected)); // CHECK(actual1.equals(actual2)); //} // //TEST (ConstrainedLinearFactorGraph, eliminate ) //{ // ConstrainedLinearFactorGraph fg = createConstrainedLinearFactorGraph(); // FGConfig c = createConstrainedConfig(); // // Ordering ord1; // ord1.push_back("x0"); // ord1.push_back("x1"); // // ConstrainedChordalBayesNet::shared_ptr actual = fg.eliminate(ord1); // // // create an expected bayes net // ConstrainedChordalBayesNet::shared_ptr expected(new ConstrainedChordalBayesNet); // // ConstrainedConditionalGaussian::shared_ptr d(new ConstrainedConditionalGaussian);//(c["x0"], "x0")); // expected->insert_df("x0", d); // // Matrix A = eye(2); // double sigma = 0.1; // Vector dv = c["x1"]; // ConditionalGaussian::shared_ptr cg(new ConditionalGaussian(dv/sigma, A/sigma)); // expected->insert("x1", cg); // // CHECK(actual->equals(*expected)); //} // //TEST (ConstrainedLinearFactorGraph, baseline_optimize) //{ // // tests performance when there are no equality factors in the graph // LinearFactorGraph lfg = createLinearFactorGraph(); // ConstrainedLinearFactorGraph clfg(lfg); // copy in the linear factor graph // // Ordering ord; // ord.push_back("l1"); // ord.push_back("x1"); // ord.push_back("x2"); // // FGConfig actual = clfg.optimize(ord); // // FGConfig expected = lfg.optimize(ord); // should be identical to regular lfg optimize // // CHECK(actual.equals(expected)); //} // //TEST (ConstrainedLinearFactorGraph, baseline_eliminate_one ) //{ // LinearFactorGraph fg = createLinearFactorGraph(); // ConstrainedLinearFactorGraph cfg(fg); // // ConditionalGaussian::shared_ptr actual = cfg.eliminate_one("x1"); // // // create expected Conditional Gaussian // Matrix R11 = Matrix_(2,2, // 15.0, 00.0, // 00.0, 15.0 // ); // Matrix S12 = Matrix_(2,2, // -1.66667, 0.00, // +0.00,-1.66667 // ); // Matrix S13 = Matrix_(2,2, // -6.66667, 0.00, // +0.00,-6.66667 // ); // Vector d(2); d(0) = -2; d(1) = -1.0/3.0; // ConditionalGaussian expected(d,R11,"l1",S12,"x2",S13); // // CHECK( actual->equals(expected) ); //} // //TEST (ConstrainedLinearFactorGraph, eliminate_constraint) //{ //// ConstrainedLinearFactorGraph fg = createConstrainedLinearFactorGraph(); //// ConstrainedConditionalGaussian::shared_ptr actual = fg.eliminate_constraint("x0"); //// //// FGConfig c = createConstrainedConfig(); //// ConstrainedConditionalGaussian::shared_ptr expected(new ConstrainedConditionalGaussian);//(c["x0"], "x0")); //// //// CHECK(assert_equal(*actual, *expected)); // check output for correct delta function //// //// CHECK(fg.size() == 1); // check size //// //// ConstrainedLinearFactorGraph::eq_const_iterator eit = fg.eq_begin(); //// CHECK(eit == fg.eq_end()); // ensure no remaining equality factors //// //// // verify the remaining factor - should be a unary factor on x1 //// ConstrainedLinearFactorGraph::const_iterator it = fg.begin(); //// LinearFactor::shared_ptr factor_actual = *it; //// //// CHECK(factor_actual->size() == 1); //} // //TEST (ConstrainedLinearFactorGraph, constraintCombineAndEliminate ) //{ // // create a set of factors // ConstrainedLinearFactorGraph fg = createConstrainedLinearFactorGraph(); // LinearConstraint::shared_ptr eq = fg.eq_at(0); // LinearFactor::shared_ptr f1 = fg[0]; // // // make a joint linear factor // set f1_set; // f1_set.insert(f1); // boost::shared_ptr joined(new MutableLinearFactor(f1_set)); // // // create a sample graph // ConstrainedLinearFactorGraph graph; // // // combine linear factor and eliminate // graph.constraintCombineAndEliminate(*eq, *joined); // // // verify structure // CHECK(graph.size() == 1); // will have only one factor // LinearFactor::shared_ptr actual = graph[0]; // CHECK(actual->size() == 1); // remaining factor will be unary // // // verify values // FGConfig c = createConstrainedConfig(); // Vector exp_v = c["x1"]; // Matrix A = actual->get_A("x1"); // Vector b = actual->get_b(); // Vector act_v = backsubstitution(A, b); // CHECK(assert_equal(act_v, exp_v)); //} // //TEST (ConstrainedLinearFactorGraph, extract_eq) //{ // ConstrainedLinearFactorGraph fg = createConstrainedLinearFactorGraph(); // LinearConstraint::shared_ptr actual = fg.extract_eq("x0"); // // Vector v1(2); v1(0)=1.;v1(1)=2.; // LinearConstraint::shared_ptr expected(new LinearConstraint(v1, "x0")); // // // verify output // CHECK(assert_equal(*actual, *expected)); // // // verify removal // ConstrainedLinearFactorGraph::eq_const_iterator it = fg.eq_begin(); // CHECK(it == fg.eq_end()); // // // verify full size // CHECK(fg.size() == 1); //} // //TEST( ConstrainedLinearFactorGraph, GET_ORDERING) //{ // ConstrainedLinearFactorGraph fg = createConstrainedLinearFactorGraph(); // Ordering ord = fg.getOrdering(); // CHECK(ord[0] == string("x0")); // CHECK(ord[1] == string("x1")); //} /* ************************************************************************* */ int main() { TestResult tr; return TestRegistry::runAllTests(tr); } /* ************************************************************************* */