%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % GTSAM Copyright 2010, Georgia Tech Research Corporation, % Atlanta, Georgia 30332-0415 % All Rights Reserved % Authors: Frank Dellaert, et al. (see THANKS for the full author list) % % See LICENSE for the license information % % @brief Simple robotics example using the pre-built planar SLAM domain % @author Alex Cunningham % @author Frank Dellaert %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Create the same factor graph as in PlanarSLAMExample import gtsam.* i1 = symbol('x',1); i2 = symbol('x',2); i3 = symbol('x',3); graph = planarSLAM.Graph; priorMean = Pose2(0.0, 0.0, 0.0); % prior at origin priorNoise = noiseModel.Diagonal.Sigmas([0.3; 0.3; 0.1]); graph.addPosePrior(i1, priorMean, priorNoise); % add directly to graph odometry = Pose2(2.0, 0.0, 0.0); odometryNoise = noiseModel.Diagonal.Sigmas([0.2; 0.2; 0.1]); graph.addRelativePose(i1, i2, odometry, odometryNoise); graph.addRelativePose(i2, i3, odometry, odometryNoise); %% Except, for measurements we offer a choice import gtsam.* j1 = symbol('l',1); j2 = symbol('l',2); degrees = pi/180; brNoise = noiseModel.Diagonal.Sigmas([0.1; 0.2]); if 1 graph.addBearingRange(i1, j1, Rot2(45*degrees), sqrt(4+4), brNoise); graph.addBearingRange(i2, j1, Rot2(90*degrees), 2, brNoise); else bearingModel = noiseModel.Diagonal.Sigmas(0.1); graph.addBearing(i1, j1, Rot2(45*degrees), bearingModel); graph.addBearing(i2, j1, Rot2(90*degrees), bearingModel); end graph.addBearingRange(i3, j2, Rot2(90*degrees), 2, brNoise); %% Initialize MCMC sampler with ground truth sample = planarSLAM.Values; sample.insertPose(i1, Pose2(0,0,0)); sample.insertPose(i2, Pose2(2,0,0)); sample.insertPose(i3, Pose2(4,0,0)); sample.insertPoint(j1, Point2(2,2)); sample.insertPoint(j2, Point2(4,2)); %% Calculate and plot Covariance Ellipses figure(1);clf;hold on marginals = graph.marginals(sample); for i=1:3 key = symbol('x',i); pose{i} = sample.pose(key); P{i}=marginals.marginalCovariance(key); if i>1 plot([pose{i-1}.x;pose{i}.x],[pose{i-1}.y;pose{i}.y],'r-'); end end for i=1:3 plotPose2(pose{i},'g',P{i}) end for j=1:2 key = symbol('l',j); point{j} = sample.point(key); Q{j}=marginals.marginalCovariance(key); S{j}=chol(Q{j}); % for sampling plotPoint2(point{j},'b',Q{j}) end plot([pose{1}.x;point{1}.x],[pose{1}.y;point{1}.y],'c-'); plot([pose{2}.x;point{1}.x],[pose{2}.y;point{1}.y],'c-'); plot([pose{3}.x;point{2}.x],[pose{3}.y;point{2}.y],'c-'); axis equal %% Do Sampling on point 2 N=1000; for s=1:N delta = S{2}*randn(2,1); proposedPoint = Point2(point{2}.x+delta(1),point{2}.y+delta(2)); plotPoint2(proposedPoint,'k.') end