/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file testTOAFactor.cpp * @brief Unit tests for "Time of Arrival" factor * @author Frank Dellaert * @author Jay Chakravarty * @date December 2014 */ #include #include #include #include #include #include #include #include using namespace std; using namespace gtsam; // typedefs typedef Eigen::Matrix Vector1; typedef Expression Double_; typedef Expression Point3_; typedef Expression Event_; // units static const double ms = 1e-3; static const double cm = 1e-2; // Create a noise model for the TOA error static SharedNoiseModel model(noiseModel::Isotropic::Sigma(1, 0.5 * ms)); // And for height prior static SharedNoiseModel heightModel(noiseModel::Isotropic::Sigma(1, 100 * cm)); static const double timeOfEvent = 25; static const Event exampleEvent(timeOfEvent, 1, 0, 0); static const Point3 microphoneAt0; /** * Factor graph that supports adding Expression Factors directly */ class ExpressionFactorGraph: public NonlinearFactorGraph { public: /// @name Adding Factors /// @{ /** * Add an Expression factor directly * Which implements |h(x)-z|^2_R */ template void addExpressionFactor(const Expression& h, const T& z, const SharedNoiseModel& R) { push_back(boost::make_shared >(R, z, h)); } /// @} }; //***************************************************************************** TEST( TOAFactor, NewWay ) { Key key = 12; Event_ eventExpression(key); Point3_ microphoneConstant(microphoneAt0); // constant expression double measurement = 7; Double_ expression(&Event::toa, eventExpression, microphoneConstant); ExpressionFactor factor(model, measurement, expression); } //***************************************************************************** TEST( TOAFactor, WholeEnchilada ) { static const bool verbose = false; // Create microphones const double height = 0.5; vector microphones; microphones.push_back(Point3(0, 0, height)); microphones.push_back(Point3(403 * cm, 0, height)); microphones.push_back(Point3(403 * cm, 403 * cm, height)); microphones.push_back(Point3(0, 403 * cm, 2 * height)); EXPECT_LONGS_EQUAL(4, microphones.size()); // microphones.push_back(Point3(200 * cm, 200 * cm, height)); // Create a ground truth point const double timeOfEvent = 0; Event groundTruthEvent(timeOfEvent, 245 * cm, 201.5 * cm, (212 - 45) * cm); // Simulate simulatedTOA size_t K = microphones.size(); vector simulatedTOA(K); for (size_t i = 0; i < K; i++) { simulatedTOA[i] = groundTruthEvent.toa(microphones[i]); if (verbose) { cout << "mic" << i << " = " << microphones[i] << endl; cout << "z" << i << " = " << simulatedTOA[i] / ms << endl; } } // Now, estimate using non-linear optimization ExpressionFactorGraph graph; Key key = 12; Event_ eventExpression(key); for (size_t i = 0; i < K; i++) { Point3_ microphone_i(microphones[i]); // constant expression Double_ predictTOA(&Event::toa, eventExpression, microphone_i); graph.addExpressionFactor(predictTOA, simulatedTOA[i], model); } /// Print the graph if (verbose) GTSAM_PRINT(graph); // Create initial estimate Values initialEstimate; //Event estimatedEvent(timeOfEvent -10, 200 * cm, 150 * cm, 350 * cm); Vector4 delta; delta << 0.1, 0.1, -0.1, 0.1; Event estimatedEvent = groundTruthEvent.retract(delta); initialEstimate.insert(key, estimatedEvent); // Print if (verbose) initialEstimate.print("Initial Estimate:\n"); // Optimize using Levenberg-Marquardt optimization. LevenbergMarquardtParams params; params.setAbsoluteErrorTol(1e-10); if (verbose) params.setVerbosity("ERROR"); LevenbergMarquardtOptimizer optimizer(graph, initialEstimate, params); Values result = optimizer.optimize(); if (verbose) result.print("Final Result:\n"); EXPECT(assert_equal(groundTruthEvent, result.at(key), 1e-6)); } //***************************************************************************** /// Test real data TEST( TOAFactor, RealExperiment1 ) { static const bool verbose = true; // Create constant expressions for microphones const double height = 0.5; vector microphones; microphones.push_back(Point3(0, 0, height)); microphones.push_back(Point3(403 * cm, 0, height)); microphones.push_back(Point3(403 * cm, 403 * cm, height)); microphones.push_back(Point3(0, 403 * cm, height)); EXPECT_LONGS_EQUAL(4, microphones.size()); vector data(15); size_t i = 0; data[i++] << 1.2648, 1.2648, 1.2677, 1.2643; data[i++] << 1.7329, 1.7347, 1.7354, 1.7338; data[i++] << 2.2475, 2.2551, 2.2538, 2.2474; data[i++] << 2.6945, 2.696, 2.6958, 2.694; data[i++] << 3.1486, 3.152, 3.1513, 3.1501; data[i++] << 3.6145, 3.611, 3.6076, 3.6067; data[i++] << 4.1003, 4.1004, 4.099, 4.0972; data[i++] << 4.5732, 4.568, 4.5667, 4.5722; data[i++] << 5.0482, 5.0458, 5.0443, 5.0453; data[i++] << 5.5311, 5.5256, 5.5254, 5.5305; data[i++] << 5.9908, 5.9856, 5.9853, 5.9905; data[i++] << 6.4575, 6.4524, 6.4527, 6.4579; data[i++] << 6.8983, 6.8971, 6.8984, 6.9016; data[i++] << 7.3581, 7.3524, 7.3538, 7.3588; data[i++] << 7.8286, 7.8286, 7.8302, 7.8353; // Create unknowns and initial estimate Event nullEvent(3, 403 / 2 * cm, 403 / 2 * cm, (212 - 45) * cm); Values initialEstimate; vector unknownEvents; for (size_t j = 0; j < 15; j++) { initialEstimate.insert(j, nullEvent); unknownEvents.push_back(Event_(j)); } // Print if (verbose) initialEstimate.print("Initial Estimate:\n"); // Create factor graph with TOA factors ExpressionFactorGraph graph; for (size_t i = 0; i < 4; i++) { for (size_t j = 0; j < 15; j++) { Double_ predictTOA_ij(&Event::toa, unknownEvents[j], microphones[i]); graph.addExpressionFactor(predictTOA_ij, data[j][i], model); } } // Add height priors const double heightPrior = (212 - 45) * cm; for (size_t j = 0; j < 15; j++) { Double_ height_j(&Event::height, unknownEvents[j]); graph.addExpressionFactor(height_j, heightPrior, heightModel); } /// Print the graph if (verbose) GTSAM_PRINT(graph); // Optimize using Levenberg-Marquardt optimization. LevenbergMarquardtParams params; params.setAbsoluteErrorTol(1e-10); if (verbose) params.setVerbosity("ERROR"); LevenbergMarquardtOptimizer optimizer(graph, initialEstimate, params); Values result = optimizer.optimize(); if (verbose) for (size_t j = 0; j < 15; j++) { Event event = result.at(j); double t = event.time(); Point3 p = event.location(); cout << boost::format("t(%1%) = %2%;\tlocation(%1%,:) = [%3%, %4%, %5%];") % (j + 1) % t % p.x() % p.y() % p.z() << endl; } } //***************************************************************************** int main() { TestResult tr; return TestRegistry::runAllTests(tr); } //*****************************************************************************