Manifold Geometry of the Sphere S^2

Frank, Can, and Manohar

December 15, 2013

Retraction

Suppose we have a point $p \in S^2$ and a 3-vector z, Absil [1] tells us we can simply add z to p and renormalize to get a new point q on the sphere. This is what he calls a **retraction** $R_p(z)$,

$$q = R_p(z) = \frac{p+z}{\|p+z\|} = \frac{p+z}{\alpha}$$

with α the norm of p + z. The only restriction on z is that it is in the tangent space T_pS^2 at p, i.e., $p^Tz = 0$. Multiplying with p^T on both sides we have

$$\alpha p^T q = p^T p + p^T z$$

and (since $p^T p = 1$ and $p^T z = 0$) we have $\alpha = 1/(p^T q)$.

Inverse

Suppose we are given points p and q on the sphere, what is the tangent vector z that takes p to q? We can find a basis B for the tangent space, with $B = [b_1|b_2]$ a 3×2 matrix, by either

- 1. Decompose p = QR, with Q orthonormal and R of the form $[1\ 0\ 0]^T$, and hence $p = Q_1$. The basis $B = [Q_2|Q_3]$, i.e., the last two columns of Q.
- 2. Form $b_1 = p \times a$, with a (consistently) chosen to be non-parallel to p, and $b_2 = p \times b_1$.

Now, if $z = B\xi$ with $\xi \in \mathbb{R}^2$ the 2D coordinate in the tangent plane basis B, we have

$$\alpha q = p + z = p + B\xi$$

If we multiply both sides with B^T (project on the basis B) we obtain

$$\alpha B^T q = B^T p + B^T B \xi$$

and because $B^Tp=0$ and $B^TB=I$ we trivially obtain ξ as the scaled projection B^Tq :

$$\xi = \alpha B^T q = \frac{B^T q}{p^T q}$$

Exponential Map

The exponential map itself is not so difficult, and is given in Ma01ijcv, as well as in this CVPR tutorial by Anuj Srivastava: http://stat.fsu.edu/~anuj/CVPR_Tutorial/Part2.pdf.

$$\exp_p z = \cos\left(\|z\|\right)p + \sin\left(\|z\|\right)\frac{z}{\|z\|}$$

The latter also gives the inverse, i.e., get the tangent vector z to go from p to q:

$$z = \log_p q = \frac{\theta}{\sin \theta} (q - p \cos \theta) p$$

with
$$\theta = \cos^{-1}(p^T q)$$
.

References

[1] P.-A. Absil, R. Mahony, and R. Sepulchre. *Optimization Algorithms on Matrix Manifolds*. Princeton University Press, Princeton, NJ, USA, 2007.