#LyX 2.0 created this file. For more info see http://www.lyx.org/ \lyxformat 413 \begin_document \begin_header \textclass article \use_default_options true \maintain_unincluded_children false \language english \language_package default \inputencoding auto \fontencoding global \font_roman default \font_sans default \font_typewriter default \font_default_family default \use_non_tex_fonts false \font_sc false \font_osf false \font_sf_scale 100 \font_tt_scale 100 \graphics default \default_output_format default \output_sync 0 \bibtex_command default \index_command default \paperfontsize 11 \spacing single \use_hyperref false \papersize default \use_geometry true \use_amsmath 1 \use_esint 1 \use_mhchem 1 \use_mathdots 1 \cite_engine basic \use_bibtopic false \use_indices false \paperorientation portrait \suppress_date false \use_refstyle 1 \index Index \shortcut idx \color #008000 \end_index \leftmargin 3cm \topmargin 3cm \rightmargin 3cm \bottommargin 3cm \secnumdepth 3 \tocdepth 3 \paragraph_separation indent \paragraph_indentation default \quotes_language english \papercolumns 1 \papersides 1 \paperpagestyle default \tracking_changes false \output_changes false \html_math_output 0 \html_css_as_file 0 \html_be_strict false \end_header \begin_body \begin_layout Title Manifold Geometry of the Sphere \begin_inset Formula $S^{2}$ \end_inset \end_layout \begin_layout Author Frank, Can, and Manohar \end_layout \begin_layout Standard \begin_inset FormulaMacro \newcommand{\xihat}{z} {z} \end_inset \end_layout \begin_layout Subsubsection* Retraction \end_layout \begin_layout Standard Suppose we have a point \begin_inset Formula $p\in S^{2}$ \end_inset and a 3-vector \begin_inset Formula $\xihat$ \end_inset , Absil \begin_inset CommandInset citation LatexCommand cite key "Absil07book" \end_inset tells us we can simply add \begin_inset Formula $\xihat$ \end_inset to \begin_inset Formula $p$ \end_inset and renormalize to get a new point \begin_inset Formula $q$ \end_inset on the sphere. This is what he calls a \series bold retraction \family roman \series medium \shape up \size normal \emph off \bar no \strikeout off \uuline off \uwave off \noun off \color none \begin_inset Formula $R_{p}(\xihat)$ \end_inset , \family default \series default \shape default \size default \emph default \bar default \strikeout default \uuline default \uwave default \noun default \color inherit \begin_inset Formula \[ q=R_{p}(\xihat)=\frac{p+\xihat}{\left\Vert p+z\right\Vert }=\frac{p+\xihat}{\alpha} \] \end_inset with \begin_inset Formula $\alpha$ \end_inset the norm of \begin_inset Formula $p+\xihat$ \end_inset . The only restriction on \begin_inset Formula $\xihat$ \end_inset is that it is in the tangent space \begin_inset Formula $T_{p}S^{2}$ \end_inset at \begin_inset Formula $p$ \end_inset , i.e., \begin_inset Formula $p^{T}\xihat=0$ \end_inset . Multiplying with \begin_inset Formula $p^{T}$ \end_inset on both sides we have \begin_inset Formula \[ \alpha p^{T}q=p^{T}p+p^{T}\xihat \] \end_inset and (since \begin_inset Formula $p^{T}p=1$ \end_inset and \begin_inset Formula $p^{T}\xihat=0$ \end_inset ) we have \begin_inset Formula $\alpha=1/(p^{T}q)$ \end_inset . \end_layout \begin_layout Subsubsection* Inverse \end_layout \begin_layout Standard Suppose we are given points \begin_inset Formula $p$ \end_inset and \begin_inset Formula $q$ \end_inset on the sphere, what is the tangent vector \begin_inset Formula $\xihat$ \end_inset that takes \begin_inset Formula $p$ \end_inset to \begin_inset Formula $q$ \end_inset ? We can find a basis \begin_inset Formula $B$ \end_inset for the tangent space, with \begin_inset Formula $B=\left[b_{1}|b_{2}\right]$ \end_inset a \begin_inset Formula $3\times2$ \end_inset matrix, by either \end_layout \begin_layout Enumerate Decompose \begin_inset Formula $p=QR$ \end_inset , with \begin_inset Formula $Q$ \end_inset orthonormal and \begin_inset Formula $R$ \end_inset of the form \begin_inset Formula $[1\,0\,0]^{T}$ \end_inset , and hence \begin_inset Formula $p=Q_{1}$ \end_inset . The basis \begin_inset Formula $B=\left[Q_{2}|Q_{3}\right]$ \end_inset , i.e., the last two columns of \begin_inset Formula $Q$ \end_inset . \end_layout \begin_layout Enumerate Form \begin_inset Formula $b_{1}=p\times a$ \end_inset , with \begin_inset Formula $a$ \end_inset (consistently) chosen to be non-parallel to \begin_inset Formula $p$ \end_inset , and \begin_inset Formula $b_{2}=p\times b_{1}$ \end_inset . \begin_inset Note Note status collapsed \begin_layout Plain Layout To choose \begin_inset Formula $a$ \end_inset , one way is to divide the sphere into regions, e.g., pick the axis \begin_inset Formula $e_{i}$ \end_inset such that \begin_inset Formula $e_{i}^{T}p$ \end_inset is smallest. However, that leads to discontinuous boundaries. Since \begin_inset Formula $0\leq\left|e_{i}^{T}p\right|\leq1$ \end_inset for all \begin_inset Formula $p\in S^{2}$ \end_inset , a better idea might be to use a mixture, e.g., \begin_inset Formula \[ a=\frac{1}{2(x^{2}+y^{2}+z^{2})}\left[\begin{array}{c} y^{2}+z^{2}\\ x^{2}+z^{2}\\ x^{2}+y^{2} \end{array}\right] \] \end_inset \end_layout \end_inset \end_layout \begin_layout Standard Now, if \begin_inset Formula $\xihat=B\xi$ \end_inset with \begin_inset Formula $\xi\in R^{2}$ \end_inset the 2D coordinate in the tangent plane basis \begin_inset Formula $B$ \end_inset , we have \begin_inset Formula \[ \alpha q=p+\xihat=p+B\xi \] \end_inset If we multiply both sides with \begin_inset Formula $B^{T}$ \end_inset (project on the basis \begin_inset Formula $B$ \end_inset ) we obtain \begin_inset Formula \[ \alpha B^{T}q=B^{T}p+B^{T}B\xi \] \end_inset and because \begin_inset Formula $B^{T}p=0$ \end_inset and \begin_inset Formula $B^{T}B=I$ \end_inset we trivially obtain \begin_inset Formula $\xi$ \end_inset as the scaled projection \begin_inset Formula $B^{T}q$ \end_inset : \begin_inset Formula \[ \xi=\alpha B^{T}q=\frac{B^{T}q}{p^{T}q} \] \end_inset \end_layout \begin_layout Subsubsection* Exponential Map \end_layout \begin_layout Standard The exponential map itself is not so difficult, and is given in Ma01ijcv, as well as in this CVPR tutorial by Anuj Srivastava: \begin_inset CommandInset href LatexCommand href name "http://stat.fsu.edu/~anuj/CVPR_Tutorial/Part2.pdf" \end_inset . \begin_inset Formula \[ \exp_{p}\xihat=\cos\left(\left\Vert \xihat\right\Vert \right)p+\sin\left(\left\Vert \xihat\right\Vert \right)\frac{\xihat}{\left\Vert \xihat\right\Vert } \] \end_inset The latter also gives the inverse, i.e., get the tangent vector \begin_inset Formula $z$ \end_inset to go from \begin_inset Formula $p$ \end_inset to \begin_inset Formula $q$ \end_inset : \begin_inset Formula \[ z=\log_{p}q=\frac{\theta}{\sin\theta}\left(q-p\cos\theta\right)p \] \end_inset with \begin_inset Formula $\theta=\cos^{-1}\left(p^{T}q\right)$ \end_inset . \end_layout \begin_layout Standard \begin_inset CommandInset bibtex LatexCommand bibtex bibfiles "../../../papers/refs" options "plain" \end_inset \end_layout \end_body \end_document