/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file PlanarSLAMSelfContained_advanced.cpp * @brief Simple robotics example with all typedefs internal to this script. * @author Alex Cunningham */ #include #include // for all nonlinear keys #include // for points and poses #include #include // for modeling measurement uncertainty - all models included here #include // add in headers for specific factors #include #include #include // implementations for structures - needed if self-contained, and these should be included last #include #include #include using namespace std; using namespace gtsam; /** * In this version of the system we make the following assumptions: * - All values are axis aligned * - Robot poses are facing along the X axis (horizontal, to the right in images) * - We have bearing and range information for measurements * - We have full odometry for measurements * - The robot and landmarks are on a grid, moving 2 meters each step * - Landmarks are 2 meters away from the robot trajectory */ int main(int argc, char** argv) { // create keys for variables Symbol x1('x',1), x2('x',2), x3('x',3); Symbol l1('l',1), l2('l',2); // create graph container and add factors to it NonlinearFactorGraph graph; /* add prior */ // gaussian for prior SharedDiagonal prior_model = noiseModel::Diagonal::Sigmas(Vector_(3, 0.3, 0.3, 0.1)); Pose2 prior_measurement(0.0, 0.0, 0.0); // prior at origin PriorFactor posePrior(x1, prior_measurement, prior_model); // create the factor graph.add(posePrior); // add the factor to the graph /* add odometry */ // general noisemodel for odometry SharedDiagonal odom_model = noiseModel::Diagonal::Sigmas(Vector_(3, 0.2, 0.2, 0.1)); Pose2 odom_measurement(2.0, 0.0, 0.0); // create a measurement for both factors (the same in this case) // create between factors to represent odometry BetweenFactor odom12(x1, x2, odom_measurement, odom_model); BetweenFactor odom23(x2, x3, odom_measurement, odom_model); graph.add(odom12); // add both to graph graph.add(odom23); /* add measurements */ // general noisemodel for measurements SharedDiagonal meas_model = noiseModel::Diagonal::Sigmas(Vector_(2, 0.1, 0.2)); // create the measurement values - indices are (pose id, landmark id) Rot2 bearing11 = Rot2::fromDegrees(45), bearing21 = Rot2::fromDegrees(90), bearing32 = Rot2::fromDegrees(90); double range11 = sqrt(4+4), range21 = 2.0, range32 = 2.0; // create bearing/range factors BearingRangeFactor meas11(x1, l1, bearing11, range11, meas_model); BearingRangeFactor meas21(x2, l1, bearing21, range21, meas_model); BearingRangeFactor meas32(x3, l2, bearing32, range32, meas_model); // add the factors graph.add(meas11); graph.add(meas21); graph.add(meas32); graph.print("Full Graph"); // initialize to noisy points Values initial; initial.insert(x1, Pose2(0.5, 0.0, 0.2)); initial.insert(x2, Pose2(2.3, 0.1,-0.2)); initial.insert(x3, Pose2(4.1, 0.1, 0.1)); initial.insert(l1, Point2(1.8, 2.1)); initial.insert(l2, Point2(4.1, 1.8)); initial.print("initial estimate"); // optimize using Levenberg-Marquardt optimization with an ordering from colamd // first using sequential elimination LevenbergMarquardtParams lmParams; lmParams.elimination = LevenbergMarquardtParams::SEQUENTIAL; Values resultSequential = LevenbergMarquardtOptimizer(graph, initial, lmParams).optimize(); resultSequential.print("final result (solved with a sequential solver)"); // then using multifrontal, advanced interface // Note that we keep the original optimizer object so we can use the COLAMD // ordering it computes. LevenbergMarquardtOptimizer optimizer(graph, initial); Values resultMultifrontal = optimizer.optimize(); resultMultifrontal.print("final result (solved with a multifrontal solver)"); // Print marginals covariances for all variables Marginals marginals(graph, resultMultifrontal, Marginals::CHOLESKY); print(marginals.marginalCovariance(x1), "x1 covariance"); print(marginals.marginalCovariance(x2), "x2 covariance"); print(marginals.marginalCovariance(x3), "x3 covariance"); print(marginals.marginalCovariance(l1), "l1 covariance"); print(marginals.marginalCovariance(l2), "l2 covariance"); return 0; }