%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % GTSAM Copyright 2010, Georgia Tech Research Corporation, % Atlanta, Georgia 30332-0415 % All Rights Reserved % Authors: Frank Dellaert, et al. (see THANKS for the full author list) % % See LICENSE for the license information % % @brief A structure from motion example % @author Duy-Nguyen Ta %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Assumptions % - Landmarks as 8 vertices of a cube: (10,10,10) (-10,10,10) etc... % - Cameras are on a circle around the cube, pointing at the world origin % - Each camera sees all landmarks. % - Visual measurements as 2D points are given, corrupted by Gaussian noise. % Data Options options.triangle = false; options.nrCameras = 10; options.showImages = false; %% Generate data [data,truth] = VisualISAMGenerateData(options); measurementNoiseSigma = 1.0; pointNoiseSigma = 0.1; poseNoiseSigmas = [0.001 0.001 0.001 0.1 0.1 0.1]'; %% Create the graph (defined in visualSLAM.h, derived from NonlinearFactorGraph) graph = visualSLAMGraph; %% Add factors for all measurements measurementNoise = gtsamSharedNoiseModel_Sigma(2,measurementNoiseSigma); for i=1:size(data.z,1) for j=1:size(data.z,2) graph.addMeasurement(data.z{i,j}, measurementNoise, symbol('x',i), symbol('l',j), data.K); end end %% Add Gaussian priors for a pose and a landmark to constrain the system posePriorNoise = gtsamSharedNoiseModel_Sigmas(poseNoiseSigmas); graph.addPosePrior(symbol('x',1), truth.cameras{1}.pose, posePriorNoise); pointPriorNoise = gtsamSharedNoiseModel_Sigma(3,pointNoiseSigma); graph.addPointPrior(symbol('l',1), truth.points{1}, pointPriorNoise); %% Print the graph graph.print(sprintf('\nFactor graph:\n')); %% Initialize cameras and points to ground truth in this example initialEstimate = visualSLAMValues; for i=1:size(truth.cameras,2) initialEstimate.insertPose(symbol('x',i), truth.cameras{i}.pose); end for j=1:size(truth.points,2) initialEstimate.insertPoint(symbol('l',j), truth.points{j}); end initialEstimate.print(sprintf('\nInitial estimate:\n ')); %% Optimize using Levenberg-Marquardt optimization with an ordering from colamd result = graph.optimize(initialEstimate); result.print(sprintf('\nFinal result:\n ')); %% Plot results with covariance ellipses marginals = graph.marginals(result); cla hold on; for j=1:result.nrPoints P = marginals.marginalCovariance(symbol('l',j)); point_j = result.point(symbol('l',j)); plot3(point_j.x, point_j.y, point_j.z,'marker','o'); covarianceEllipse3D([point_j.x;point_j.y;point_j.z],P); end for i=1:result.nrPoses P = marginals.marginalCovariance(symbol('x',i)); pose_i = result.pose(symbol('x',i)); plotPose3(pose_i,P,10); end axis([-35 35 -35 35 -15 15]); axis equal view(-37,40) colormap hot