/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file SFMExample_SmartFactor.cpp * @brief A structure-from-motion problem on a simulated dataset, using smart projection factor * @author Duy-Nguyen Ta * @author Jing Dong * @author Frank Dellaert */ // In GTSAM, measurement functions are represented as 'factors'. // The factor we used here is SmartProjectionPoseFactor. // Every smart factor represent a single landmark, seen from multiple cameras. // The SmartProjectionPoseFactor only optimizes for the poses of a camera, // not the calibration, which is assumed known. #include // For an explanation of these headers, see SFMExample.cpp #include "SFMdata.h" #include using namespace std; using namespace gtsam; // Make the typename short so it looks much cleaner typedef SmartProjectionPoseFactor SmartFactor; /* ************************************************************************* */ int main(int argc, char* argv[]) { // Define the camera calibration parameters Cal3_S2::shared_ptr K(new Cal3_S2(50.0, 50.0, 0.0, 50.0, 50.0)); // Define the camera observation noise model noiseModel::Isotropic::shared_ptr measurementNoise = noiseModel::Isotropic::Sigma(2, 1.0); // one pixel in u and v // Create the set of ground-truth landmarks and poses vector points = createPoints(); vector poses = createPoses(); // Create a factor graph NonlinearFactorGraph graph; // Simulated measurements from each camera pose, adding them to the factor graph for (size_t j = 0; j < points.size(); ++j) { // every landmark represent a single landmark, we use shared pointer to init the factor, and then insert measurements. SmartFactor::shared_ptr smartfactor(new SmartFactor()); for (size_t i = 0; i < poses.size(); ++i) { // generate the 2D measurement SimpleCamera camera(poses[i], *K); Point2 measurement = camera.project(points[j]); // call add() function to add measurement into a single factor, here we need to add: // 1. the 2D measurement // 2. the corresponding camera's key // 3. camera noise model // 4. camera calibration smartfactor->add(measurement, i, measurementNoise, K); } // insert the smart factor in the graph graph.push_back(smartfactor); } // Add a prior on pose x0. This indirectly specifies where the origin is. // 30cm std on x,y,z 0.1 rad on roll,pitch,yaw noiseModel::Diagonal::shared_ptr poseNoise = noiseModel::Diagonal::Sigmas( (Vector(6) << Vector3::Constant(0.3), Vector3::Constant(0.1)).finished()); graph.push_back(PriorFactor(0, poses[0], poseNoise)); // Because the structure-from-motion problem has a scale ambiguity, the problem is // still under-constrained. Here we add a prior on the second pose x1, so this will // fix the scale by indicating the distance between x0 and x1. // Because these two are fixed, the rest of the poses will be also be fixed. graph.push_back(PriorFactor(1, poses[1], poseNoise)); // add directly to graph graph.print("Factor Graph:\n"); // Create the initial estimate to the solution // Intentionally initialize the variables off from the ground truth Values initialEstimate; Pose3 delta(Rot3::rodriguez(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20)); for (size_t i = 0; i < poses.size(); ++i) initialEstimate.insert(i, poses[i].compose(delta)); initialEstimate.print("Initial Estimates:\n"); // Optimize the graph and print results LevenbergMarquardtOptimizer optimizer(graph, initialEstimate); Values result = optimizer.optimize(); result.print("Final results:\n"); // A smart factor represent the 3D point inside the factor, not as a variable. // The 3D position of the landmark is not explicitly calculated by the optimizer. // To obtain the landmark's 3D position, we use the "point" method of the smart factor. Values landmark_result; for (size_t j = 0; j < points.size(); ++j) { // The graph stores Factor shared_ptrs, so we cast back to a SmartFactor first SmartFactor::shared_ptr smart = boost::dynamic_pointer_cast(graph[j]); if (smart) { // The output of point() is in boost::optional, as sometimes // the triangulation operation inside smart factor will encounter degeneracy. boost::optional point = smart->point(result); if (point) // ignore if boost::optional return NULL landmark_result.insert(j, *point); } } landmark_result.print("Landmark results:\n"); cout << "final error: " << graph.error(result) << endl; cout << "number of iterations: " << optimizer.iterations() << endl; return 0; } /* ************************************************************************* */