/* * @file SimpleHelicopter.h * @brief Implement SimpleHelicopter discrete dynamics model and variational integrator, * following [Kobilarov09siggraph] * @author Duy-Nguyen Ta */ #pragma once #include #include #include #include namespace gtsam { /** * Implement the Reconstruction equation: \f$ g_{k+1} = g_k \exp (h\xi_k) \f$, where * \f$ h \f$: timestep (parameter) * \f$ g_{k+1}, g_{k} \f$: poses at the current and the next timestep * \f$ \xi_k \f$: the body-fixed velocity (Lie algebra) * It is somewhat similar to BetweenFactor, but treats the body-fixed velocity * \f$ \xi_k \f$ as a variable. So it is a three-way factor. * Note: this factor is necessary if one needs to smooth the entire graph. It's not needed * in sequential update method. */ class Reconstruction : public NoiseModelFactorN { double h_; // time step typedef NoiseModelFactorN Base; public: Reconstruction(Key gKey1, Key gKey, Key xiKey, double h, double mu = 1000.0) : Base(noiseModel::Constrained::All(6, std::abs(mu)), gKey1, gKey, xiKey), h_(h) { } ~Reconstruction() override {} /// @return a deep copy of this factor gtsam::NonlinearFactor::shared_ptr clone() const override { return boost::static_pointer_cast( gtsam::NonlinearFactor::shared_ptr(new Reconstruction(*this))); } /** \f$ log((g_k\exp(h\xi_k))^{-1}g_{k+1}) = 0 \f$, with optional derivatives */ Vector evaluateError(const Pose3& gk1, const Pose3& gk, const Vector6& xik, boost::optional H1 = boost::none, boost::optional H2 = boost::none, boost::optional H3 = boost::none) const override { Matrix6 D_exphxi_xi; Pose3 exphxi = Pose3::Expmap(h_ * xik, H3 ? &D_exphxi_xi : 0); Matrix6 D_gkxi_gk, D_gkxi_exphxi; Pose3 gkxi = gk.compose(exphxi, D_gkxi_gk, H3 ? &D_gkxi_exphxi : 0); Matrix6 D_hx_gk1, D_hx_gkxi; Pose3 hx = gkxi.between(gk1, (H2 || H3) ? &D_hx_gkxi : 0, H1 ? &D_hx_gk1 : 0); Matrix6 D_log_hx; Vector error = Pose3::Logmap(hx, D_log_hx); if (H1) *H1 = D_log_hx * D_hx_gk1; if (H2 || H3) { Matrix6 D_log_gkxi = D_log_hx * D_hx_gkxi; if (H2) *H2 = D_log_gkxi * D_gkxi_gk; if (H3) *H3 = D_log_gkxi * D_gkxi_exphxi * D_exphxi_xi * h_; } return error; } }; /** * Implement the Discrete Euler-Poincare' equation: */ class DiscreteEulerPoincareHelicopter : public NoiseModelFactorN { double h_; /// time step Matrix Inertia_; /// Inertia tensors Inertia = [ J 0; 0 M ] Vector Fu_; /// F is the 6xc Control matrix, where c is the number of control variables uk, which directly change the vehicle pose (e.g., gas/brake/speed) /// F(.) is actually a function of the shape variables, which do not change the pose, but affect the vehicle's shape, e.g. steering wheel. /// Fu_ encodes everything we need to know about the vehicle's dynamics. double m_; /// mass. For gravity external force f_ext, which has a fixed formula in this case. // TODO: Fk_ and f_ext should be generalized as functions (factor nodes) on control signals and poses/velocities. // This might be needed in control or system identification problems. // We treat them as constant here, since the control inputs are to specify. typedef NoiseModelFactorN Base; public: DiscreteEulerPoincareHelicopter(Key xiKey1, Key xiKey_1, Key gKey, double h, const Matrix& Inertia, const Vector& Fu, double m, double mu = 1000.0) : Base(noiseModel::Constrained::All(6, std::abs(mu)), xiKey1, xiKey_1, gKey), h_(h), Inertia_(Inertia), Fu_(Fu), m_(m) { } ~DiscreteEulerPoincareHelicopter() override {} /// @return a deep copy of this factor gtsam::NonlinearFactor::shared_ptr clone() const override { return boost::static_pointer_cast( gtsam::NonlinearFactor::shared_ptr(new DiscreteEulerPoincareHelicopter(*this))); } /** DEP, with optional derivatives * pk - pk_1 - h_*Fu_ - h_*f_ext = 0 * where pk = CT_TLN(h*xi_k)*Inertia*xi_k * pk_1 = CT_TLN(-h*xi_k_1)*Inertia*xi_k_1 * */ Vector evaluateError(const Vector6& xik, const Vector6& xik_1, const Pose3& gk, boost::optional H1 = boost::none, boost::optional H2 = boost::none, boost::optional H3 = boost::none) const override { Vector muk = Inertia_*xik; Vector muk_1 = Inertia_*xik_1; // Apply the inverse right-trivialized tangent (derivative) map of the exponential map, // using the trapezoidal Lie-Newmark (TLN) scheme, to a vector. // TLN is just a first order approximation of the dExpInv_exp above, detailed in [Kobilarov09siggraph] // C_TLN formula: I6 - 1/2 ad[xi]. Matrix D_adjThxik_muk, D_adjThxik1_muk1; Vector pk = muk - 0.5*Pose3::adjointTranspose(h_*xik, muk, D_adjThxik_muk); Vector pk_1 = muk_1 - 0.5*Pose3::adjointTranspose(-h_*xik_1, muk_1, D_adjThxik1_muk1); Matrix D_gravityBody_gk; Point3 gravityBody = gk.rotation().unrotate(Point3(0.0, 0.0, -9.81*m_), D_gravityBody_gk, boost::none); Vector f_ext = (Vector(6) << 0.0, 0.0, 0.0, gravityBody.x(), gravityBody.y(), gravityBody.z()).finished(); Vector hx = pk - pk_1 - h_*Fu_ - h_*f_ext; if (H1) { Matrix D_pik_xi = Inertia_-0.5*(h_*D_adjThxik_muk + Pose3::adjointMap(h_*xik).transpose()*Inertia_); *H1 = D_pik_xi; } if (H2) { Matrix D_pik1_xik1 = Inertia_-0.5*(-h_*D_adjThxik1_muk1 + Pose3::adjointMap(-h_*xik_1).transpose()*Inertia_); *H2 = -D_pik1_xik1; } if (H3) { *H3 = Z_6x6; insertSub(*H3, -h_*D_gravityBody_gk, 3, 0); } return hx; } #if 0 Vector computeError(const Vector6& xik, const Vector6& xik_1, const Pose3& gk) const { Vector pk = Pose3::dExpInv_exp(h_*xik).transpose()*Inertia_*xik; Vector pk_1 = Pose3::dExpInv_exp(-h_*xik_1).transpose()*Inertia_*xik_1; Point3 gravityBody = gk.rotation().unrotate(Point3(0.0, 0.0, -9.81*m_)); Vector f_ext = (Vector(6) << 0.0, 0.0, 0.0, gravityBody.x(), gravityBody.y(), gravityBody.z()); Vector hx = pk - pk_1 - h_*Fu_ - h_*f_ext; return hx; } Vector evaluateError(const Vector6& xik, const Vector6& xik_1, const Pose3& gk, boost::optional H1 = boost::none, boost::optional H2 = boost::none, boost::optional H3 = boost::none) const { if (H1) { (*H1) = numericalDerivative31( std::function( std::bind(&DiscreteEulerPoincareHelicopter::computeError, *this, _1, _2, _3) ), xik, xik_1, gk, 1e-5 ); } if (H2) { (*H2) = numericalDerivative32( std::function( std::bind(&DiscreteEulerPoincareHelicopter::computeError, *this, _1, _2, _3) ), xik, xik_1, gk, 1e-5 ); } if (H3) { (*H3) = numericalDerivative33( std::function( std::bind(&DiscreteEulerPoincareHelicopter::computeError, *this, _1, _2, _3) ), xik, xik_1, gk, 1e-5 ); } return computeError(xik, xik_1, gk); } #endif }; } // namespace gtsam