/** * @file Pendulum.h * @brief Three-way factors for the pendulum dynamics as in [Stern06siggraph] for * (1) explicit Euler method, (2) implicit Euler method, and (3) sympletic Euler method. * Note that all methods use the same formulas for the factors. They are only different in * the way we connect variables using those factors in the graph. * @author Duy-Nguyen Ta */ #pragma once #include namespace gtsam { //************************************************************************* /** * This class implements the first constraint. * - For explicit Euler method: q_{k+1} = q_k + h*v_k * - For implicit Euler method: q_{k+1} = q_k + h*v_{k+1} * - For sympletic Euler method: q_{k+1} = q_k + h*v_{k+1} */ class PendulumFactor1: public NoiseModelFactorN { public: protected: typedef NoiseModelFactorN Base; /** default constructor to allow for serialization */ PendulumFactor1() {} double h_; // time step public: typedef boost::shared_ptr shared_ptr; ///Constructor. k1: q_{k+1}, k: q_k, velKey: velocity variable depending on the chosen method, h: time step PendulumFactor1(Key k1, Key k, Key velKey, double h, double mu = 1000.0) : Base(noiseModel::Constrained::All(1, std::abs(mu)), k1, k, velKey), h_(h) {} /// @return a deep copy of this factor gtsam::NonlinearFactor::shared_ptr clone() const override { return boost::static_pointer_cast( gtsam::NonlinearFactor::shared_ptr(new PendulumFactor1(*this))); } /** q_k + h*v - q_k1 = 0, with optional derivatives */ Vector evaluateError(const double& qk1, const double& qk, const double& v, boost::optional H1 = boost::none, boost::optional H2 = boost::none, boost::optional H3 = boost::none) const override { const size_t p = 1; if (H1) *H1 = -Matrix::Identity(p,p); if (H2) *H2 = Matrix::Identity(p,p); if (H3) *H3 = Matrix::Identity(p,p)*h_; return (Vector(1) << qk+v*h_-qk1).finished(); } }; // \PendulumFactor1 //************************************************************************* /** * This class implements the second constraint the * - For explicit Euler method: v_{k+1} = v_k - h*g/L*sin(q_k) * - For implicit Euler method: v_{k+1} = v_k - h*g/L*sin(q_{k+1}) * - For sympletic Euler method: v_{k+1} = v_k - h*g/L*sin(q_k) */ class PendulumFactor2: public NoiseModelFactorN { public: protected: typedef NoiseModelFactorN Base; /** default constructor to allow for serialization */ PendulumFactor2() {} double h_; double g_; double r_; public: typedef boost::shared_ptr shared_ptr; ///Constructor. vk1: v_{k+1}, vk: v_k, qkey: q's key depending on the chosen method, h: time step PendulumFactor2(Key vk1, Key vk, Key qkey, double h, double r = 1.0, double g = 9.81, double mu = 1000.0) : Base(noiseModel::Constrained::All(1, std::abs(mu)), vk1, vk, qkey), h_(h), g_(g), r_(r) {} /// @return a deep copy of this factor gtsam::NonlinearFactor::shared_ptr clone() const override { return boost::static_pointer_cast( gtsam::NonlinearFactor::shared_ptr(new PendulumFactor2(*this))); } /** v_k - h*g/L*sin(q) - v_k1 = 0, with optional derivatives */ Vector evaluateError(const double & vk1, const double & vk, const double & q, boost::optional H1 = boost::none, boost::optional H2 = boost::none, boost::optional H3 = boost::none) const override { const size_t p = 1; if (H1) *H1 = -Matrix::Identity(p,p); if (H2) *H2 = Matrix::Identity(p,p); if (H3) *H3 = -Matrix::Identity(p,p)*h_*g_/r_*cos(q); return (Vector(1) << vk - h_ * g_ / r_ * sin(q) - vk1).finished(); } }; // \PendulumFactor2 //************************************************************************* /** * This class implements the first position-momentum update rule * \f$ p_k = -D_1 L_d(q_k,q_{k+1},h) = \frac{1}{h}mr^{2}\left(q_{k+1}-q_{k}\right)+mgrh(1-\alpha)\,\sin\left((1-\alpha)q_{k}+\alpha q_{k+1}\right) \f$ * \f$ = (1/h)mr^2 (q_{k+1}-q_k) + mgrh(1-alpha) sin ((1-alpha)q_k+\alpha q_{k+1}) \f$ */ class PendulumFactorPk: public NoiseModelFactorN { public: protected: typedef NoiseModelFactorN Base; /** default constructor to allow for serialization */ PendulumFactorPk() {} double h_; //! time step double m_; //! mass double r_; //! length double g_; //! gravity double alpha_; //! in [0,1], define the mid-point between [q_k,q_{k+1}] for approximation. The sympletic rule above can be obtained as a special case when alpha = 0. public: typedef boost::shared_ptr shared_ptr; ///Constructor PendulumFactorPk(Key pKey, Key qKey, Key qKey1, double h, double m = 1.0, double r = 1.0, double g = 9.81, double alpha = 0.0, double mu = 1000.0) : Base(noiseModel::Constrained::All(1, std::abs(mu)), pKey, qKey, qKey1), h_(h), m_(m), r_(r), g_(g), alpha_(alpha) {} /// @return a deep copy of this factor gtsam::NonlinearFactor::shared_ptr clone() const override { return boost::static_pointer_cast( gtsam::NonlinearFactor::shared_ptr(new PendulumFactorPk(*this))); } /** 1/h mr^2 (qk1-qk)+mgrh (1-a) sin((1-a)pk + a*pk1) - pk = 0, with optional derivatives */ Vector evaluateError(const double & pk, const double & qk, const double & qk1, boost::optional H1 = boost::none, boost::optional H2 = boost::none, boost::optional H3 = boost::none) const override { const size_t p = 1; double qmid = (1-alpha_)*qk + alpha_*qk1; double mr2_h = 1/h_*m_*r_*r_; double mgrh = m_*g_*r_*h_; if (H1) *H1 = -Matrix::Identity(p,p); if (H2) *H2 = Matrix::Identity(p,p)*(-mr2_h + mgrh*(1-alpha_)*(1-alpha_)*cos(qmid)); if (H3) *H3 = Matrix::Identity(p,p)*( mr2_h + mgrh*(1-alpha_)*(alpha_)*cos(qmid)); return (Vector(1) << mr2_h * (qk1 - qk) + mgrh * (1 - alpha_) * sin(qmid) - pk).finished(); } }; // \PendulumFactorPk //************************************************************************* /** * This class implements the second position-momentum update rule * \f$ p_k1 = D_2 L_d(q_k,q_{k+1},h) = \frac{1}{h}mr^{2}\left(q_{k+1}-q_{k}\right)-mgrh\alpha\sin\left((1-\alpha)q_{k}+\alpha q_{k+1}\right) \f$ * \f$ = (1/h)mr^2 (q_{k+1}-q_k) - mgrh alpha sin ((1-alpha)q_k+\alpha q_{k+1}) \f$ */ class PendulumFactorPk1: public NoiseModelFactorN { public: protected: typedef NoiseModelFactorN Base; /** default constructor to allow for serialization */ PendulumFactorPk1() {} double h_; //! time step double m_; //! mass double r_; //! length double g_; //! gravity double alpha_; //! in [0,1], define the mid-point between [q_k,q_{k+1}] for approximation. The sympletic rule above can be obtained as a special case when alpha = 0. public: typedef boost::shared_ptr shared_ptr; ///Constructor PendulumFactorPk1(Key pKey1, Key qKey, Key qKey1, double h, double m = 1.0, double r = 1.0, double g = 9.81, double alpha = 0.0, double mu = 1000.0) : Base(noiseModel::Constrained::All(1, std::abs(mu)), pKey1, qKey, qKey1), h_(h), m_(m), r_(r), g_(g), alpha_(alpha) {} /// @return a deep copy of this factor gtsam::NonlinearFactor::shared_ptr clone() const override { return boost::static_pointer_cast( gtsam::NonlinearFactor::shared_ptr(new PendulumFactorPk1(*this))); } /** 1/h mr^2 (qk1-qk) - mgrh a sin((1-a)pk + a*pk1) - pk1 = 0, with optional derivatives */ Vector evaluateError(const double & pk1, const double & qk, const double & qk1, boost::optional H1 = boost::none, boost::optional H2 = boost::none, boost::optional H3 = boost::none) const override { const size_t p = 1; double qmid = (1-alpha_)*qk + alpha_*qk1; double mr2_h = 1/h_*m_*r_*r_; double mgrh = m_*g_*r_*h_; if (H1) *H1 = -Matrix::Identity(p,p); if (H2) *H2 = Matrix::Identity(p,p)*(-mr2_h - mgrh*(1-alpha_)*alpha_*cos(qmid)); if (H3) *H3 = Matrix::Identity(p,p)*( mr2_h - mgrh*alpha_*alpha_*cos(qmid)); return (Vector(1) << mr2_h * (qk1 - qk) - mgrh * alpha_ * sin(qmid) - pk1).finished(); } }; // \PendulumFactorPk1 }