/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file LIEKF_NavstateExample.cpp * @brief Example of a Left-Invariant Extended Kalman Filter on NavState * using IMU (predict) and GPS (update) measurements. * @date April 25, 2025 * @authors Scott Baker, Matt Kielo, Frank Dellaert */ #include #include #include #include #include using namespace std; using namespace gtsam; /** * @brief Left-invariant dynamics for NavState. * @param X Current state (unused for left-invariant error dynamics). * @param imu 6×1 vector [a; ω]: linear accel (first 3) and angular vel (last * 3). * @param H Optional 9×9 Jacobian w.r.t. X (always zero here). * @return 9×1 tangent: [ω; 0₃; a]. */ Vector9 dynamics(const NavState& X, const Vector6& imu, OptionalJacobian<9, 9> H = {}) { auto a = imu.head<3>(); auto w = imu.tail<3>(); Vector9 xi; xi << w, Vector3::Zero(), a; if (H) *H = Matrix9::Zero(); return xi; } /** * @brief GPS measurement model: returns position and its Jacobian. * @param X Current state. * @param H Optional 3×9 Jacobian w.r.t. X. * @return 3×1 position vector. */ Vector3 h_gps(const NavState& X, OptionalJacobian<3, 9> H = {}) { if (H) { // H = [ 0₃×3, 0₃×3, R ] *H << Z_3x3, Z_3x3, X.R(); } return X.t(); } int main() { // Initial state, covariance, and time step NavState X0; Matrix9 P0 = Matrix9::Identity() * 0.1; double dt = 1.0; // Create the filter with the initial state and covariance. LIEKF ekf(X0, P0); // Process & measurement noise Matrix9 Q = Matrix9::Identity() * 0.01; Matrix3 R = Matrix3::Identity() * 0.5; // Create the IMU measurements of the form (linear_acceleration, // angular_velocity) Vector6 imu1, imu2; imu1 << 0.1, 0.0, 0.0, 0.0, 0.2, 0.0; imu2 << 0.0, 0.3, 0.0, 0.4, 0.0, 0.0; // Create the GPS measurements of the form (px, py, pz) Vector3 z1, z2; z1 << 0.3, 0.0, 0.0; z2 << 0.6, 0.0, 0.0; cout << "=== Initialization ===\n" << "X0: " << ekf.state() << "\n" << "P0: " << ekf.covariance() << "\n\n"; ekf.predict(dynamics, imu1, dt, Q); cout << "--- After first predict ---\n" << "X: " << ekf.state() << "\n" << "P: " << ekf.covariance() << "\n\n"; ekf.update(h_gps, z1, R); cout << "--- After first update ---\n" << "X: " << ekf.state() << "\n" << "P: " << ekf.covariance() << "\n\n"; ekf.predict(dynamics, imu2, dt, Q); cout << "--- After second predict ---\n" << "X: " << ekf.state() << "\n" << "P: " << ekf.covariance() << "\n\n"; ekf.update(h_gps, z2, R); cout << "--- After second update ---\n" << "X: " << ekf.state() << "\n" << "P: " << ekf.covariance() << "\n"; return 0; }