/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010-2020, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file Hybrid_City10000.cpp * @brief Example of using hybrid estimation * with multiple odometry measurements. * @author Varun Agrawal * @date January 22, 2025 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace gtsam; using namespace boost::algorithm; using symbol_shorthand::L; using symbol_shorthand::M; using symbol_shorthand::X; auto kOpenLoopModel = noiseModel::Diagonal::Sigmas(Vector3::Ones() * 10); const double kOpenLoopConstant = kOpenLoopModel->negLogConstant(); auto kPriorNoiseModel = noiseModel::Diagonal::Sigmas( (Vector(3) << 0.0001, 0.0001, 0.0001).finished()); auto kPoseNoiseModel = noiseModel::Diagonal::Sigmas( (Vector(3) << 1.0 / 30.0, 1.0 / 30.0, 1.0 / 100.0).finished()); const double kPoseNoiseConstant = kPoseNoiseModel->negLogConstant(); // Experiment Class class Experiment { public: // Parameters with default values size_t maxLoopCount = 3000; // 3000: {1: 62s, 2: 21s, 3: 20s, 4: 31s, 5: 39s} No DT optimizations // 3000: {1: 65s, 2: 20s, 3: 16s, 4: 21s, 5: 28s} With DT optimizations // 3000: {1: 59s, 2: 19s, 3: 18s, 4: 26s, 5: 33s} With DT optimizations + // merge size_t updateFrequency = 3; size_t maxNrHypotheses = 10; private: std::string filename_; HybridSmoother smoother_; HybridNonlinearFactorGraph graph_; Values initial_; Values result_; /** * @brief Write the result of optimization to file. * * @param result The Values object with the final result. * @param num_poses The number of poses to write to the file. * @param filename The file name to save the result to. */ void writeResult(const Values& result, size_t numPoses, const std::string& filename = "Hybrid_city10000.txt") { std::ofstream outfile; outfile.open(filename); for (size_t i = 0; i < numPoses; ++i) { Pose2 outPose = result.at(X(i)); outfile << outPose.x() << " " << outPose.y() << " " << outPose.theta() << std::endl; } outfile.close(); std::cout << "Output written to " << filename << std::endl; } /** * @brief Create a hybrid loop closure factor where * 0 - loose noise model and 1 - loop noise model. */ HybridNonlinearFactor hybridLoopClosureFactor(size_t loopCounter, size_t keyS, size_t keyT, const Pose2& measurement) { DiscreteKey l(L(loopCounter), 2); auto f0 = std::make_shared>( X(keyS), X(keyT), measurement, kOpenLoopModel); auto f1 = std::make_shared>( X(keyS), X(keyT), measurement, kPoseNoiseModel); std::vector factors{{f0, kOpenLoopConstant}, {f1, kPoseNoiseConstant}}; HybridNonlinearFactor mixtureFactor(l, factors); return mixtureFactor; } /// @brief Create hybrid odometry factor with discrete measurement choices. HybridNonlinearFactor hybridOdometryFactor( size_t numMeasurements, size_t keyS, size_t keyT, const DiscreteKey& m, const std::vector& poseArray) { auto f0 = std::make_shared>( X(keyS), X(keyT), poseArray[0], kPoseNoiseModel); auto f1 = std::make_shared>( X(keyS), X(keyT), poseArray[1], kPoseNoiseModel); std::vector factors{{f0, kPoseNoiseConstant}, {f1, kPoseNoiseConstant}}; HybridNonlinearFactor mixtureFactor(m, factors); return mixtureFactor; } /// @brief Perform smoother update and optimize the graph. void smootherUpdate(HybridSmoother& smoother, HybridNonlinearFactorGraph& graph, const Values& initial, size_t maxNrHypotheses, Values* result) { HybridGaussianFactorGraph linearized = *graph.linearize(initial); smoother.update(linearized, maxNrHypotheses); // throw if x0 not in hybridBayesNet_: const KeySet& keys = smoother.hybridBayesNet().keys(); if (keys.find(X(0)) == keys.end()) { throw std::runtime_error("x0 not in hybridBayesNet_"); } graph.resize(0); // HybridValues delta = smoother.hybridBayesNet().optimize(); // result->insert_or_assign(initial.retract(delta.continuous())); } public: /// Construct with filename of experiment to run explicit Experiment(const std::string& filename) : filename_(filename), smoother_(0.99) {} /// @brief Run the main experiment with a given maxLoopCount. void run() { // Prepare reading std::ifstream in(filename_); if (!in.is_open()) { std::cerr << "Failed to open file: " << filename_ << std::endl; return; } // Initialize local variables size_t discreteCount = 0, index = 0; size_t loopCount = 0; std::list timeList; // Set up initial prior double x = 0.0; double y = 0.0; double rad = 0.0; Pose2 priorPose(x, y, rad); initial_.insert(X(0), priorPose); graph_.push_back(PriorFactor(X(0), priorPose, kPriorNoiseModel)); // Initial update clock_t beforeUpdate = clock(); smootherUpdate(smoother_, graph_, initial_, maxNrHypotheses, &result_); clock_t afterUpdate = clock(); std::vector> smootherUpdateTimes; smootherUpdateTimes.push_back({index, afterUpdate - beforeUpdate}); // Flag to decide whether to run smoother update size_t numberOfHybridFactors = 0; // Start main loop size_t keyS = 0, keyT = 0; clock_t startTime = clock(); std::string line; while (getline(in, line) && index < maxLoopCount) { std::vector parts; split(parts, line, is_any_of(" ")); keyS = stoi(parts[1]); keyT = stoi(parts[3]); int numMeasurements = stoi(parts[5]); std::vector poseArray(numMeasurements); for (int i = 0; i < numMeasurements; ++i) { x = stod(parts[6 + 3 * i]); y = stod(parts[7 + 3 * i]); rad = stod(parts[8 + 3 * i]); poseArray[i] = Pose2(x, y, rad); } // Take the first one as the initial estimate Pose2 odomPose = poseArray[0]; if (keyS == keyT - 1) { // Odometry factor if (numMeasurements > 1) { // Add hybrid factor DiscreteKey m(M(discreteCount), numMeasurements); HybridNonlinearFactor mixtureFactor = hybridOdometryFactor(numMeasurements, keyS, keyT, m, poseArray); graph_.push_back(mixtureFactor); discreteCount++; numberOfHybridFactors += 1; std::cout << "mixtureFactor: " << keyS << " " << keyT << std::endl; } else { graph_.add(BetweenFactor(X(keyS), X(keyT), odomPose, kPoseNoiseModel)); } // Insert next pose initial guess initial_.insert(X(keyT), initial_.at(X(keyS)) * odomPose); } else { // Loop closure HybridNonlinearFactor loopFactor = hybridLoopClosureFactor(loopCount, keyS, keyT, odomPose); // print loop closure event keys: std::cout << "Loop closure: " << keyS << " " << keyT << std::endl; graph_.add(loopFactor); numberOfHybridFactors += 1; loopCount++; } if (numberOfHybridFactors >= updateFrequency) { // print the keys involved in the smoother update std::cout << "Smoother update: " << graph_.size() << std::endl; gttic_(SmootherUpdate); beforeUpdate = clock(); smootherUpdate(smoother_, graph_, initial_, maxNrHypotheses, &result_); afterUpdate = clock(); smootherUpdateTimes.push_back({index, afterUpdate - beforeUpdate}); gttoc_(SmootherUpdate); numberOfHybridFactors = 0; } // Record timing for odometry edges only if (keyS == keyT - 1) { clock_t curTime = clock(); timeList.push_back(curTime - startTime); } // Print some status every 100 steps if (index % 100 == 0) { std::cout << "Index: " << index << std::endl; if (!timeList.empty()) { std::cout << "Acc_time: " << timeList.back() / CLOCKS_PER_SEC << " seconds" << std::endl; // delta.discrete().print("The Discrete Assignment"); tictoc_finishedIteration_(); tictoc_print_(); } } index++; } // Final update beforeUpdate = clock(); smootherUpdate(smoother_, graph_, initial_, maxNrHypotheses, &result_); afterUpdate = clock(); smootherUpdateTimes.push_back({index, afterUpdate - beforeUpdate}); // Final optimize gttic_(HybridSmootherOptimize); HybridValues delta = smoother_.optimize(); gttoc_(HybridSmootherOptimize); result_.insert_or_assign(initial_.retract(delta.continuous())); std::cout << "Final error: " << smoother_.hybridBayesNet().error(delta) << std::endl; clock_t endTime = clock(); clock_t totalTime = endTime - startTime; std::cout << "Total time: " << totalTime / CLOCKS_PER_SEC << " seconds" << std::endl; // Write results to file writeResult(result_, keyT + 1, "Hybrid_City10000.txt"); // TODO Write to file // for (size_t i = 0; i < smoother_update_times.size(); i++) { // auto p = smoother_update_times.at(i); // std::cout << p.first << ", " << p.second / CLOCKS_PER_SEC << // std::endl; // } // Write timing info to file std::ofstream outfileTime; std::string timeFileName = "Hybrid_City10000_time.txt"; outfileTime.open(timeFileName); for (auto accTime : timeList) { outfileTime << accTime << std::endl; } outfileTime.close(); std::cout << "Output " << timeFileName << " file." << std::endl; } }; /* ************************************************************************* */ // Function to parse command-line arguments void parseArguments(int argc, char* argv[], size_t& maxLoopCount, size_t& updateFrequency, size_t& maxNrHypotheses) { for (int i = 1; i < argc; ++i) { std::string arg = argv[i]; if (arg == "--max-loop-count" && i + 1 < argc) { maxLoopCount = std::stoul(argv[++i]); } else if (arg == "--update-frequency" && i + 1 < argc) { updateFrequency = std::stoul(argv[++i]); } else if (arg == "--max-nr-hypotheses" && i + 1 < argc) { maxNrHypotheses = std::stoul(argv[++i]); } else if (arg == "--help") { std::cout << "Usage: " << argv[0] << " [options]\n" << "Options:\n" << " --max-loop-count Set the maximum loop " "count (default: 3000)\n" << " --update-frequency Set the update frequency " "(default: 3)\n" << " --max-nr-hypotheses Set the maximum number of " "hypotheses (default: 10)\n" << " --help Show this help message\n"; std::exit(0); } } } /* ************************************************************************* */ // Main function int main(int argc, char* argv[]) { Experiment experiment(findExampleDataFile("T1_city10000_04.txt")); // Experiment experiment("../data/mh_T1_city10000_04.txt"); //Type #1 only // Experiment experiment("../data/mh_T3b_city10000_10.txt"); //Type #3 only // Experiment experiment("../data/mh_T1_T3_city10000_04.txt"); //Type #1 + // Type #3 // Parse command-line arguments parseArguments(argc, argv, experiment.maxLoopCount, experiment.updateFrequency, experiment.maxNrHypotheses); // Run the experiment experiment.run(); return 0; }