/** * @file testInference.cpp * @brief Unit tests for functionality declared in inference.h * @author Frank Dellaert */ #include #define GTSAM_MAGIC_KEY #include #include using namespace std; using namespace gtsam; using namespace example; /* ************************************************************************* */ // The tests below test the *generic* inference algorithms. Some of these have // specialized versions in the derived classes GaussianFactorGraph etc... /* ************************************************************************* */ /* ************************************************************************* */ TEST(GaussianFactorGraph, createSmoother) { GaussianFactorGraph fg2; Ordering ordering; boost::tie(fg2,ordering) = createSmoother(3); LONGS_EQUAL(5,fg2.size()); // eliminate list x3var; x3var.push_back(ordering["x3"]); list x1var; x1var.push_back(ordering["x1"]); GaussianBayesNet p_x3 = *Inference::Marginal(fg2, x3var); GaussianBayesNet p_x1 = *Inference::Marginal(fg2, x1var); CHECK(assert_equal(*p_x1.back(),*p_x3.front())); // should be the same because of symmetry } /* ************************************************************************* */ TEST( Inference, marginals ) { // create and marginalize a small Bayes net on "x" GaussianBayesNet cbn = createSmallGaussianBayesNet(); list xvar; xvar.push_back(0); GaussianBayesNet actual = *Inference::Marginal(GaussianFactorGraph(cbn), xvar); // expected is just scalar Gaussian on x GaussianBayesNet expected = scalarGaussian(0, 4, sqrt(2)); CHECK(assert_equal(expected,actual)); } /* ************************************************************************* */ int main() { TestResult tr; return TestRegistry::runAllTests(tr);} /* ************************************************************************* */