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1 Derivatives of Lie Group Mappings

1.1 Homomorphisms
The following is relevant [1, page 45]: suppose that Φ : G→ H is a a mapping (Lie group homo-
morphism). Then there exists a unique linear map φ : g→ h

φ(x̂) ∆= lim
t→0

d
dt

Φ
(
etx̂)

such that

1. Φ
(
ex̂) = eφ(x̂)

2. φ
(
T x̂T−1) = Φ(T )φ(x̂)Φ(T−1)

3. φ ([x̂, ŷ]) = [φ(x̂),φ(ŷ)]

In other words, the map φ is the derivative of Φ at the identity. It suffices to compute φ for a basis
of g. Since

e−x̂ =
(
e−x̂)−1

clearly φ(x̂) =−x̂ for the inverse mapping.

1.2 Derivatives
The derivatives for inverse, compose, and between can be derived from Lie group principles.
Specifically, to find the derivative of a function f (g), we want to find the Lie algebra element
ŷ ∈ g, that will result from changing g using x̂, also in exponential coordinates:

f (g)eŷ = f
(
gex̂)

Calculating these derivatives requires that we know the form of the function f .
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Starting with inverse, i.e., f (g) = g−1, we have

g−1eŷ =
(
gex̂)−1

= e−x̂g−1

eŷ = ge−x̂g−1 = eAdg(−x̂)

ŷ = Adg (−x̂) (1)

In other words, and this is very intuitive in hindsight, the inverse is just negation of x̂, along with
an adjoint to make sure it is applied in the right frame!

Compose can be derived similarly. Let us define two functions to find the derivatives in first
and second arguments:

f1(g) = gh and f2(h) = gh

The latter is easiest, as a change x̂ in the second argument h simply gets applied to the result gh:

f2(h)eŷ = f2
(
hex̂)

gheŷ = ghex̂

ŷ = x̂ (2)

The derivative for the first argument is a bit trickier:

f1(g)eŷ = f1
(
gex̂)

gheŷ = gex̂h

eŷ = h−1ex̂h = eAdh−1 x̂

ŷ = Adh−1 x̂ (3)

In other words, to apply a change x̂ in g we first need to undo h, then apply x̂, and then apply h
again. All can be done in one step by simply applying Adh−1 x̂.

Finally, let us find the derivative of between, defined as between(g,h)= compose(inverse(g),h).
The derivative in the second argument h is similarly trivial: ŷ = x̂. The first argument goes as fol-
lows:

f1(g)eŷ = f1
(
gex̂)

g−1heŷ =
(
gex̂)−1

h = e(−x̂)g−1h

eŷ =
(
h−1g

)
e(−x̂) (h−1g

)−1
= e

Ad(h−1g)(−x̂)

ŷ = Ad(h−1g) (−x̂) = Adbetween(h,g) (−x̂) (4)

Hence, now we undo h and then apply the inverse (−x̂) in the g frame.

Numerical Derivatives
Let’s examine

f (g)eŷ = f
(
gex̂)
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and multiply with f (g)−1 on both sides then take the log (which in our case returns y, not ŷ):

y(x) = log
[

f (g)−1 f
(
gex̂)]

Let us look at x = 0, and perturb in direction i, ei = [0,0,d,0,0]. Then take derivative,

∂y(d)
∂d

∆= lim
d−>0

y(d)− y(0)
d

= lim
d−>0

1
d

log
[

f (g)−1 f
(
geêi

)]
which is the basis for a numerical derivative scheme.

Let us also look at a chain rule. If we know the behavior at the origin I, we can extrapolate

f (gex̂) = f (gex̂g−1g) = f (eAdgx̂g)

2 Derivatives of Actions

2.1 Forward Action
The (usual) action of an n-dimensional matrix group G is matrix-vector multiplication on Rn,

q = T p

with p,q ∈ Rn and T ∈ GL(n). Let us first do away with the derivative in p, which is easy:

∂ (T p)
∂ p

= T

We would now like to know what an incremental action x̂ would do, through the exponential map

q(x) = Tex̂ p

with derivative
∂q(x)

∂x
= T

∂

∂x

(
ex̂ p

)
Since the matrix exponential is given by the series

eA = I +A+
A2

2!
+

A3

3!
+ . . .

we have, to first order
ex̂ p = p+ x̂p+ . . .

and the derivative of an incremental action x for matrix Lie groups becomes

∂q(x)
∂x

= T
∂ (x̂p)

∂x
∆= T Hp

where Hp is an n×n Jacobian matrix that depends on p.
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2.2 Inverse Action
When we apply the inverse transformation

q = T−1 p

we would now like to know what an incremental action x̂ on T would do:

q(x) =
(
Tex̂)−1

p

= e−x̂T−1 p
= e−x̂q
≈ q− x̂q

Hence
∂q(x)

∂x
=

∂ (q− x̂q)
∂x

=−∂ (x̂q)
∂x

=−Hq (5)

where Hq will be as above.

3 Point3
A cross product a×b can be written as a matrix multiplication

a×b = [a]×b

where [a]× is a skew-symmetric matrix defined as

[x,y,z]× =

 0 −z y
z 0 −x
−y x 0


We also have

aT [b]× =−([b]×a)T =−(a×b)T

The derivative of a cross product
∂ (a×b)

∂a
= [−b]× (6)

∂ (a×b)
∂b

= [a]× (7)
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4 2D Rotations

4.1 Rot2 (in gtsam)
A rotation is stored as (cosθ ,sinθ). An incremental rotation is applied using the trigonometric
sum rule:

cosθ
′ = cosθ cosδ − sinθ sinδ

sinθ
′ = sinθ cosδ + cosθ sinδ

where δ is an incremental rotation angle.

4.2 Derivatives of Mappings
We have the derivative of inverse,

∂RT

∂θ
=−AdR =−1

compose,
∂ (R1R2)

∂θ1
= AdRT

2
= 1 and

∂ (R1R2)
∂θ2

= 1

andbetween:
∂

(
RT

1 R2
)

∂θ1
=−AdRT

2 R1
=−1 and

∂
(
RT

1 R2
)

∂θ2
= 1

4.3 Derivatives of Actions
In the case of SO(2) the vector space is R2, and the group action corresponds to rotating a point

q = Rp

We would now like to know what an incremental rotation parameterized by θ would do:

q(ωt) = Re[ωt]+ p

The derivative is (following the exposition in Section 2):

∂q(ωt)
∂ t

= R
∂

∂ t

(
e[ωt]+ p

)
= R

∂

∂ t
([ωt]+p)

Note that

[θ ]+

[
x
y

]
= θRπ/2

[
x
y

]
= θ

[
−y
x

]
(8)

which acts like a restricted “cross product” in the plane. Hence

[θ ]+p =
[
−y
x

]
θ = ωRpi/2 pt

Hence, the final derivative of an action in its first argument is

∂q(ωt)
∂ωt

= ωRRpi/2 p = ωRpi/2Rp = ωRpi/2q

Really need to think of relationship ω and t. We don’t have a time t in our code.
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5 2D Rigid Transformations

5.1 Derivatives of Mappings
We can just define all derivatives in terms of the above adjoint map:

∂T
−1

∂ξ
= −AdT

∂ (T1T2)
∂ξ1

= Ad
T−1

2
= 1 and

∂ (T1T2)
∂ξ2

= I3

∂
(
T−1

1 T2
)

∂ξ1
= −Ad

T−1
2 T1

=−Adbetween(T2,T1) and
∂

(
T−1

1 T2
)

∂ξ2
= I3

5.2 The derivatives of Actions
The action of SE(2) on 2D points is done by embedding the points in R3 by using homogeneous
coordinates

q̂ =
[

q
1

]
=

[
R t
0 1

][
p
1

]
= T p̂

Analoguous to SE(3), we can compute a velocity ξ̂ p̂ in the local T frame:

ξ̂ p̂ =
[

[ω]+ v
0 0

][
p
1

]
=

[
[ω]+p+ v

0

]
By only taking the top two rows, we can write this as a velocity in R2, as the product of a 2× 3
matrix Hp that acts upon the exponential coordinates ξ directly:

[ω]+p+ v = v+Rπ/2 pω =
[

I2 Rπ/2 p
][

v
ω

]
= Hpξ

Hence, the final derivative of the group action is

∂q(ξ )
∂ξ

= R
[

I2 Rπ/2 p
]
=

[
R Rπ/2q

]
The derivative of the inverse action q̂ = T−1 p̂ is given by (5), specialized to SE(2):

∂
(
T−1 p̂

)
∂ξ

=−T−1
∂

(
AdT ξ̂

)
p̂

∂ξ

where the velocity now is(
AdT ξ̂

)
p̂ =

[
[ω]+ Rv−ωRπ/2t

0 0

][
p
1

]
=

[
Rv+Rπ/2(p− t)ω

0

]
and hence

∂q(ξ )
∂ξ

=−RT [
R Rπ/2(p− t)

]
=

[
−I2 −Rπ/2q

]
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6 3D Rotations

6.1 Derivatives of Mappings
Hence, we are now in a position to simply posit the derivative of inverse,

[ω ′]× = AdR ([−ω]×) = [R(−ω)]×
∂RT

∂ω
= −R

compose,
[ω ′]× = AdRT

2
([ω]×) = [RT

2 ω]×

∂ (R1R2)
∂ω1

= RT
2 and

∂ (R1R2)
∂ω2

= I3

between in its first argument,

[ω ′]× = AdRT
2 R1

([−ω]×) = [RT
2 R1(−ω)]×

∂
(
RT

1 R2
)

∂ω1
= −RT

2 R1 =−between(R2,R1)

and between in its second argument,

∂
(
RT

1 R2
)

∂ω2
= I3

6.2 Derivatives of Actions
In the case of SO(3) the vector space is R3, and the group action corresponds to rotating a point

q = Rp

We would now like to know what an incremental rotation parameterized by ω would do:

q(ω) = Re[ω]× p

hence the derivative (following the exposition in Section 2):

∂q(ω)
∂ω

= R
∂

∂ω

(
e[ω]× p

)
= R

∂

∂ω
([ω]×p) = RHp

To calculate Hp we make use of

[ω]×p = ω× p =−p×ω = [−p]×ω

Hence, the final derivative of an action in its first argument is

∂q(ω)
∂ω

= RHp = R[−p]×

The derivative of the inverse action is given by 5, specialized to SO(3):

∂q(ω)
∂ω

=−RT ∂ ([Rω ]×p)
∂ω

= RT [p]×R = [RT p]×
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7 3D Rigid Transformations

7.1 Derivatives of Mappings
Hence, as with SO(3), we are now in a position to simply posit the derivative of inverse,

∂T−1

∂ξ
= AdT =−

[
R 0

[t]×R R

]
(but unit test on the above fails !!!), compose in its first argument,

∂ (T1T2)
∂ξ1

= AdT−1
2

=
[

RT
2 0

[−RT
2 t2]×RT

2 RT
2

]
=

[
RT

2 0
RT

2 [−t2]× RT
2

]
compose in its second argument,

∂ (T1T2)
∂ξ2

= I6

between in its first argument,

∂

(
T
−1

1 T2

)
∂ξ1

= AdT21 =−
[

R 0
[t]×R R

]
with

T12 =
[

R t
0 1

]
= T

−1

1 T2 = between(T2,T1)

and between in its second argument,

∂

(
T
−1

1 T2

)
∂ξ1

= I6

7.2 The derivatives of Actions
The action of SE(3) on 3D points is done by embedding the points in R4 by using homogeneous
coordinates

q̂ =
[

q
1

]
=

[
R t
0 1

][
p
1

]
= T p̂

We would now like to know what an incremental rotation parameterized by ξ would do:

q̂(ξ ) = Teξ̂ p̂

hence the derivative (following the exposition in Section 2):

∂ q̂(ξ )
∂ξ

= T
∂

∂ξ

(
ξ̂ p̂

)
= T Hp
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where ξ̂ p̂ corresponds to a velocity in R4 (in the local T frame):

ξ̂ p̂ =
[

[ω]× v
0 0

][
p
1

]
=

[
ω× p+ v

0

]
Notice how velocities are anologous to points at infinity in projective geometry: they correspond
to free vectors indicating a direction and magnitude of change.

By only taking the top three rows, we can write this as a velocity in R3, as the product of a
3×6 matrix Hp that acts upon the exponential coordinates ξ directly:

ω× p+ v =−p×ω + v =
[
−[p]× I3

][
ω

v

]
= Hpξ

Hence, the final derivative of the group action is

∂ q̂(ξ )
∂ξ

= T Ĥp =
[

R t
0 1

][
[−p]× I3

0 0

]
in homogenous coordinates. In R3 this becomes:

∂q(ξ )
∂ξ

= R
[
−[p]× I3

]
The derivative of the inverse action T−1 p is given by formula 5:

∂ q̂(ξ )
∂ξ

=−Hq =
[

[q]× −I3
]

7.3 Pose3 (gtsam, old-style exmap)
In the old-style, we have

R′ = R(I +Ω)
t ′ = t +dt
In this case, the derivative of transform_from, Rx+ t:

∂ (R(I +Ω)x+ t)
∂ω

=
∂ (RΩx)

∂ω
=

∂ (R(ω× x))
∂ω

= R[−x]×

and with respect to dt is easy:

∂ (Rx+ t +dt)
∂dt

= I

The derivative of transform_to, inv(R)(x− t) we can obtain using the chain rule:

∂ (inv(R)(x− t))
∂ω

=
∂unrot(R,(x− t))

∂ω
= skew(RT (x− t))

and with respect to dt is easy:

∂ (RT (x− t−dt))
∂dt

=−RT
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8 2D Line Segments (Ocaml)
The error between an infinite line (a,b,c) and a 2D line segment ((x1,y1),(x2,y2)) is defined in
Line3.ml.

9 Line3vd (Ocaml)
One representation of a line is through 2 vectors (v,d), where v is the direction and the vector d
points from the orgin to the closest point on the line.

In this representation, transforming a 3D line from a world coordinate frame to a camera at
(Rc

w, tw) is done by
vc = Rc

wvw

dc = Rc
w (dw +(twvw)vw− tw)

10 Line3 (Ocaml)
For 3D lines, we use a parameterization due to C.J. Taylor, using a rotation matrix R and 2 scalars
a and b. The line direction v is simply the Z-axis of the rotated frame, i.e., v = R3, while the vector
d is given by d = aR1 +bR2.

Now, we will not use the incremental rotation scheme we used for rotations: because the matrix
R translates from the line coordinate frame to the world frame, we need to apply the incremental
rotation on the right-side:

R′ = R(I +Ω)

Projecting a line to 2D can be done easily, as both v and d are also the 2D homogenous coordinates
of two points on the projected line, and hence we have

l = v×d
= R3× (aR1 +bR2)
= a(R3×R1)+b(R3×R2)
= aR2−bR1

This can be written as a rotation of a point,

l = R

 −b
a
0


but because the incremental rotation is now done on the right, we need to figure out the derivatives
again:

∂ (R(I +Ω)x)
∂ω

=
∂ (RΩx)

∂ω
= R

∂ (Ωx)
∂ω

= R[−x]× (9)
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and hence the derivative of the projection l with respect to the rotation matrix Rof the 3D line is

∂ (l)
∂ω

= R[

 b
−a
0

]× =
[

aR3 bR3 −(aR1 +bR2)
]

(10)

or the a,b scalars:
∂ (l)
∂a

= R2

∂ (l)
∂b

=−R1

Transforming a 3D line (R,(a,b)) from a world coordinate frame to a camera frame (Rc
w, tw) is

done by

R′ = Rc
wR

a′ = a−RT
1 tw

b′ = b−RT
2 tw

Again, we need to redo the derivatives, as R is incremented from the right. The first argument is
incremented from the left, but the result is incremented on the right:

R′(I +Ω
′) = (AB)(I +Ω

′) = (I +[Sω]×)AB
I +Ω

′ = (AB)T (I +[Sω]×)(AB)
Ω
′ = R′T [Sω]×R′

Ω
′ = [R′T Sω]×

ω
′ = R′T Sω

For the second argument R we now simply have:

AB(I +Ω
′) = AB(I +Ω)

Ω
′ = Ω

ω
′ = ω

The scalar derivatives can be found by realizing that a′

b′

...

 =

 a
b
0

−RT tw

where we don’t care about the third row. Hence

∂ ((R(I +Ω2))
T tw)

∂ω
=−∂ (Ω2RT tw)

∂ω
=−[RT tw]× =

 0 RT
3 tw −RT

2 tw

−RT
3 tw 0 RT

1 tw

... ... 0


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11 Aligning 3D Scans
Below is the explanaition underlying Pose3.align, i.e. aligning two point clouds using SVD. In-
spired but modified from CVOnline...

Our model is
pc = R(pw− t)

i.e., R is from camera to world, and t is the camera location in world coordinates. The objective
function is

1
2 ∑(pc−R(pw− t))2 =

1
2 ∑(pc−Rpw +Rt)2 =

1
2 ∑

(
pc−Rpw− t ′

)2 (11)

where t ′ =−Rt is the location of the origin in the camera frame. Taking the derivative with respect
to t ′ and setting to zero we have

∑
(

pc−Rpw− t ′
)

= 0

or
t ′ =

1
n ∑(pc−Rpw) = p̄c−Rp̄w (12)

here p̄c and p̄w are the point cloud centroids. Substituting back into (11), we get

1
2 ∑(pc−R(pw− t))2 =

1
2 ∑((pc− p̄c)−R(pw− p̄w))2 =

1
2 ∑(p̂c−Rp̂w)2

Now, to minimize the above it suffices to maximize (see CVOnline)

trace
(
RTC

)
where C = ∑ p̂c (p̂w)T is the correlation matrix. Intuitively, the cloud of points is rotated to align
with the principal axes. This can be achieved by SVD decomposition on C

C = USV T

and setting
R = UV T

Clearly, from (12) we then also recover the optimal t as

t = p̄w−RT p̄c
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