The new IMU Factor

Frank Dellaert

November 30, 2020

Navigation States

Let us assume a setup where frames with image and/or laser measurements are processed at
some fairly low rate, e.g., 10 Hz.
We define the state of the vehicle at those times as attitude, position, and velocity. These

three quantities are jointly referred to as a NavState X}’ 2 {R}, P, V' }, where the superscript
n denotes the navigation frame, and b the body frame. For simplicity, we drop these indices
below where clear from context.

Vector Fields and Differential Equations

We need a way to describe the evolution of a NavState over time. The NavState lives in a
9-dimensional manifold M, defined by the orthonormality constraints on R. For a NavState
X evolving over time we can write down a differential equation

X(t) = F(t,X) (1)

where F' is a time-varying vector field on M, defined as a mapping from R x M to tangent
vectors at X. A tangent vector at X is defined as the derivative of a trajectory at X, and
for the NavState manifold this will be a triplet

[R(t,X), P(t, X), V(t,X)] € 50(3) x R3 x R3

where we use square brackets to indicate a tangent vector. The space of all tangent vectors at
X is denoted by Tx M, and hence F'(t, X) € Tx M. For example, if the state evolves along a
constant velocity trajectory

X(t) = {Ro, Po + Vot, Vo}

then the differential equation describing the trajectory is
X(t) = [0323, V0, 0321], X(0) = {Ro, Po, Vo }

Valid vector fields on a NavState manifold are special, in that the attitude and velocity
derivatives can be arbitrary functions of X and t, but the derivative of position is constrained
to be equal to the current velocity V():

X(t) = [R(X,0,V(0), V(X.0)] (2)

Suppose we are given the body angular velocity w’(t) and non-gravity acceleration a®(t)
in the body frame. We know (from Murray84book) that the derivative of R can be written as

R(X,t) = R(t)[w"(1))x

where [0]« € so(3) is the skew-symmetric matrix corresponding to #, and hence the resulting
exact vector field is

X(t) = [ROX0,V(0), V(X.1)| = [ROL O] V(0,9 + R (?) (3)

Local Coordinates

Optimization on manifolds relies crucially on the concept of local coordinates. For example,
when optimizing over the rotations SO(3) starting from an initial estimate Ry, we define a
local map ®p, from 6 € R3 to a neighborhood of SO(3) centered around Ry,

PR, (0) = Roexp ([0]x)

where exp is the matrix exponential, given by

exp ([0) = 3 101 (4)

k=0

which for SO(3) can be efficiently computed in closed form.
The local coordinates 6 are isomorphic to tangent vectors at Ry. To see this, define § = wt

and note that
dCI)RO (wt)

dt

_ dRg exp ([wt]x)
dt

= R() [wt] X

t=0 t=0

Hence, the 3-vector w defines a direction of travel on the SO(3) manifold, but does so in the
local coordinate frame define by Rjp.
A similar story holds in SFE(3): we define local coordinates ¢ = [wt, vt] € R® and a mapping

O, (€) = Toexpé

where € € se(3) is defined as

and the 6-vectors £ are mapped to tangent vectors T()é at Tj.

Derivative of The Local Coordinate Mapping

For the local coordinate mapping ®g, (¢) in SO(3) we can define a 3 x 3 Jacobian H () that
models the effect of an incremental change § to the local coordinates:

Dy (0+0) = Pr, (0) exp ([H(0)d]x) = Poy 9) (H(0)0) (5)

This Jacobian depends only on 6 and, for the case of SO(3), is given by a formula similar to
the matrix exponential map,

o0

> G

k:O

which can also be computed in closed form. In particular, H(0) = I3x3 at the base Ry.

Numerical Integration in Local Coordinates

Inspired by the paper “Lie Group Methods” by Iserles et al. [1|, when we have a differential
equation on SO(3), '
we can transfer it to a differential equation in the 3-dimensional local coordinate space. To do
so, we model the solution to (6) as

R(t) = g, (6())

To find an expression for (t), create a trajectory () that passes through R(t) for 6 = 0, and
moves 6(t) along the direction 6(t):

1(6) = R(t +6) = B, (6(t) +0()5) ~ ®rgyy (H(0)0(2)3)
Taking the derivative for § = 0 we obtain
ne)| APre (HOB)S) |
s = = R()[H(0)0(1)]
dé |5_ dé 5—0 .
Comparing this to (6) we obtain a differential equation for 6(t):
0(t) = HO) " {ROTF(R, 1)} 6(0) = 031

In other words, the vector field F(R,t) is rotated to the local frame, the inverse hat operator
is applied to get a 3-vector, which is then corrected by H ()~ away from 6 = 0.

R(t) =

Retractions

Note that the use of the exponential map in local coordinate mappings is not obligatory, even
in the context of Lie groups. Often it is computationally expedient to use mappings that are
easier to compute, but yet induce the same tangent vector at Tp. Mappings that satisfy this
constraint are collectively known as retractions. For example, for SE(3) one could use the
retraction Ry, : R® — SE(3)

Ry, (§) = To {exp ([wt]x) , vt} = {Pr, (wi), Po + Rovt}

This trajectory describes a linear path in position while the frame rotates, as opposed to the
helical path traced out by the exponential map. The tangent vector at Ty can be computed as

dR
56— Ryl Rl
t=0
which is identical to the one induced by &7, (&) = Tpexp é.
The NavState manifold is not a Lie group like SE(3), but we can easily define a retraction

that behaves similarly to the one for SFE(3), while treating velocities the same way as positions:
RXO (C) = {(I)Ro (wt) , Po + Rout, Vo + Roat}

Here ¢ = [wt, vt, at] is a 9-vector, with respectively angular, position, and velocity components.
The tangent vector at Xy is

dRx Q)| _ [Rolw]x; Rov, Roal
dt t=0

and the isomorphism between R and T'x, M is ¢ — [Ro|wt]x, Rovt, Roat].

Integration in Local Coordinates

We now proceed exactly as before to describe the evolution of the NavState in local coordinates.
Let us model the solution of the differential equation (1) as a trajectory ((t) = [6(t), p(t), v(t)],
with ¢(0) = 0, in the local coordinate frame anchored at Xy. Note that this trajectory evolves
away from Xp, and we use the symbols 6, p, and v to indicate that these are integrated rather
than differential quantities. With that, we have

X(t) = Rx, (C(1)) = {®Pr, (0(1)), Po + Rop(t), Vo + Rov(t)} (7)

We can create a trajectory v(d) that passes through X (¢) for § =0

Y(6) = X(t+8) = { @, (6(t) +0()8) , Po + Ro {p(t) + ()3}, Vo + Ro {u(t) + 6(8)8} |
and taking the derivative for § = 0 we obtain

() =)

= - [R(t)[H(e)é(t)] x> Ro p(t), Ro if(t)}

6=0
Comparing that with the vector field (3), we have exact integration iff

ROOH O], Rop(t), Roit)| = [RO (1), V(1) g + R(t)a" (1)

Or, as another way to state this, if we solve the differential equations for 6(t), p(¢), and v(t)
such that

o) = HO) Wb
p(t) = R Vo+o(t)
o(t) = Rg g+ Ry(t)a(t)

where RY(t) = R} R(t) is the rotation of the body frame with respect to R, and we have used
V(t) = Vo + Rov(t).

Application: The New IMU Factor

In the IMU factor, we need to predict the NavState X; from the current NavState X; and the
IMU measurements in-between. The above scheme suffers from a problem, which is that X;
needs to be known in order to compensate properly for the initial velocity and rotated gravity
vector. Hence, the idea of Lupton was to split up v(t) into a gravity-induced part and an
accelerometer part

o(t) = vy(t) + va ()

evolving as
vg(t) = Rng
ta(t) = Ry(t)a’(t)

The solution for the first equation is simply v, () = RI gt. Similarly, we split the position p(t)
up in three parts

p(t) = pi(t) + pg(t) + pu(t)

evolving as
pi(t) = B[Vi
Belt) = wvy(t) = Rigt
Po(t) = va(t)
Here the solutions for the two first equations are simply
pi(t) = RVt

t2
po(t) = RIZ-

The recipe for the IMU factor is then, in summary. Solve the ordinary differential equations

(t)

ot) = H(O(t) " w"(t)
ta(t) = Ry(t)a’(t)

starting from zero, up to time t;;, where R{(t) = exp[f(t)]x at all times. Form the local
coordinate vector as

gt?j T
5 T pu(tij), R; gtij + va(tij)

C(tiy) = [0(ti5), p(tij), v(tij)] = [9(tij),R¢TWij + R}
Predict the NavState X; at time ¢; from
gt?j
X; =Rx,(C(ti)) = § Pr, (0(ti5)) , Py + Viti; + - T Ripy(tij), Vi + gtij + Riva(ti;)

Note that the predicted NavState X; depends on X;, but the integrated quantities 6(t),p, (1),
and v,4(t) do not.

A Simple Euler Scheme

To solve the differential equation we can use a simple FEuler scheme:

Op+1 =0 + 9(tk)At = O+ H(gk)_l w,l;At (8)
Prt1 =Pk +Pu(t) A = pr+ vl (9)
Uka1 = Uk + Ga(te)Ar = vp + exp ([0k] %) ap Ay (10)

where 0}, 2 0(tr), P 2 pu(ty), and vy 2 vo(tr). However, the position propagation can be

done more accurately, by using exact integration of the zero-order hold acceleration ai:

Ohr1 = Op+ H(0p) 'wlA, (11)
A2

Prt1 = pk+vat+RkaZ7t (12)

Vpy1 = g + RpalAy (13)

where we defined the rotation matrix Ry = exp ([0x]x)-

Noise Propagation

Even when we assume uncorrelated noise on w® and a?, the noise on the final computed
quantities will have a non-trivial covariance structure, because the intermediate quantities 0y
and v, appear in multiple places. To model the noise propagation, let us define (; = [0k, p, k]
and rewrite Eqns. (11-13) as the non-linear function f

Ck—‘rl - f (Ck? CLZ,(A}Z)
Then the noise on (i1 propagates as
St = AeSpAL + BrIy By + Cyp29°Cy, (14)

where Ay, is the 9 x 9 partial derivative of f wrpt (, and By and C}, the respective 9 x 3 partial
derivatives with respect to the measured quantities a® and w?®.

We start with the noise propagation on 6, which is independent of the other quantities.
Taking the derivative, we have

89k+1 8H(9k)*1w£
=I33+ ——EA
20, 323 + 90, t
It can be shown that for small 6, we have
8H(0k)_1w2 1 b 89k+1 . At b
T _i[wk]x and hence o6, a3 ?[wk]x

For the derivatives of pyy1 and vgy1 we need the derivative

ORyal ORy,
89kk = Ry Z]XTek = Ry[—a}] H(6))
where we used
0(Ra) _ —a]
OR X

and the fact that the dependence of the rotation Ry on 6 is the already computed H (6y).
Putting all this together, we finally obtain

I3xs — *[WZ] <
Ap = | Ryp[—a] H0p)5" Inxs Ixsl
Rk[] H(ek)At I3><3

The other partial derivatives are simply

03><32 H(0,) 1A,
Bk = Rk% 5 Ck: = 03><3
RkAt 03><3

Units

The units of the IMU are as follows:

Parameter \ Units ‘
gyro_noise sigma rad/s/vVHz
accel noise sigma m/s? /v Hz

gyro_bias rw_sigma | rad/s or radv Hz/s

accel _bias_rw_sigma | m/s?or mvHz/s?

References

[1] Arieh Iserles, Hans Z Munthe-Kaas, Syvert P Ngrsett, and Antonella Zanna. Lie-group
methods. Acta Numerica 2000, 9:215-365, 2000.

