/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /* * easyPoint2KalmanFilter.cpp * * simple linear Kalman filter on a moving 2D point, but done using factor graphs * This example uses the templated ExtendedKalmanFilter class to perform the same * operations as in elaboratePoint2KalmanFilter * * Created on: Aug 19, 2011 * @Author: Frank Dellaert * @Author: Stephen Williams */ #include #include #include #include #include using namespace std; using namespace gtsam; // Define Types for Linear System Test typedef TypedSymbol LinearKey; typedef LieValues LinearValues; typedef Point2 LinearMeasurement; int main() { // Create the Kalman Filter initialization point Point2 x_initial(0.0, 0.0); SharedDiagonal P_initial = noiseModel::Diagonal::Sigmas(Vector_(2, 0.1, 0.1)); // Create an ExtendedKalmanFilter object ExtendedKalmanFilter ekf(x_initial, P_initial); // Now predict the state at t=1, i.e. argmax_{x1} P(x1) = P(x1|x0) P(x0) // In Kalman Filter notation, this is x_{t+1|t} and P_{t+1|t} // For the Kalman Filter, this requires a motion model, f(x_{t}) = x_{t+1|t) // Assuming the system is linear, this will be of the form f(x_{t}) = F*x_{t} + B*u_{t} + w // where F is the state transition model/matrix, B is the control input model, // and w is zero-mean, Gaussian white noise with covariance Q // Note, in some models, Q is actually derived as G*w*G^T where w models uncertainty of some // physical property, such as velocity or acceleration, and G is derived from physics // // For the purposes of this example, let us assume we are using a constant-position model and // the controls are driving the point to the right at 1 m/s. Then, F = [1 0 ; 0 1], B = [1 0 ; 0 1] // and u = [1 ; 0]. Let us also assume that the process noise Q = [0.1 0 ; 0 0.1]. Vector u = Vector_(2, 1.0, 0.0); SharedDiagonal Q = noiseModel::Diagonal::Sigmas(Vector_(2, 0.1, 0.1), true); // This simple motion can be modeled with a BetweenFactor // Create Keys LinearKey x0(0), x1(1); // Predict delta based on controls Point2 difference(1,0); // Create Factor BetweenFactor factor1(x0, x1, difference, Q); // Predict the new value with the EKF class Point2 x1_predict = ekf.predict(factor1); x1_predict.print("X1 Predict"); // Now, a measurement, z1, has been received, and the Kalman Filter should be "Updated"/"Corrected" // This is equivalent to saying P(x1|z1) ~ P(z1|x1)*P(x1) // For the Kalman Filter, this requires a measurement model h(x_{t}) = \hat{z}_{t} // Assuming the system is linear, this will be of the form h(x_{t}) = H*x_{t} + v // where H is the observation model/matrix, and v is zero-mean, Gaussian white noise with covariance R // // For the purposes of this example, let us assume we have something like a GPS that returns // the current position of the robot. Then H = [1 0 ; 0 1]. Let us also assume that the measurement noise // R = [0.25 0 ; 0 0.25]. SharedDiagonal R = noiseModel::Diagonal::Sigmas(Vector_(2, 0.25, 0.25), true); // This simple measurement can be modeled with a PriorFactor Point2 z1(1.0, 0.0); PriorFactor factor2(x1, z1, R); // Update the Kalman Filter with the measurement Point2 x1_update = ekf.update(factor2); x1_update.print("X1 Update"); // Do the same thing two more times... // Predict LinearKey x2(2); difference = Point2(1,0); BetweenFactor factor3(x1, x2, difference, Q); Point2 x2_predict = ekf.predict(factor1); x2_predict.print("X2 Predict"); // Update Point2 z2(2.0, 0.0); PriorFactor factor4(x2, z2, R); Point2 x2_update = ekf.update(factor4); x2_update.print("X2 Update"); // Do the same thing one more time... // Predict LinearKey x3(3); difference = Point2(1,0); BetweenFactor factor5(x2, x3, difference, Q); Point2 x3_predict = ekf.predict(factor5); x3_predict.print("X3 Predict"); // Update Point2 z3(3.0, 0.0); PriorFactor factor6(x3, z3, R); Point2 x3_update = ekf.update(factor6); x3_update.print("X3 Update"); return 0; }