%----------------------------------------------------------------------- % equals fg = createGaussianFactorGraph(); fg2 = createGaussianFactorGraph(); CHECK('equals',fg.equals(fg2,1e-9)); %----------------------------------------------------------------------- % error zero = createZeroDelta(); actual = fg.error(zero); DOUBLES_EQUAL( 5.625, actual, 1e-9 ); %----------------------------------------------------------------------- % eliminate_x1 fg = createGaussianFactorGraph(); actual = fg.eliminateOne('x1'); %----------------------------------------------------------------------- % eliminate_x2 fg = createGaussianFactorGraph(); actual = fg.eliminateOne('x2'); %----------------------------------------------------------------------- % eliminateAll sigma1=[.1;.1]; I = eye(2); R1 = I; d1=[-.1;-.1]; cg1 = GaussianConditional('x1',d1, R1,sigma1); sigma2=[0.149071; 0.149071]; R2 = I; A1= -I; d2=[0; .2]; cg2 = GaussianConditional('l1',d2, R2, 'x1', A1,sigma2); sigma3=[0.0894427; 0.0894427]; R3 = I; A21 = -0.2*I; A22 = -0.8*I; d3 =[.2; -.14]; cg3 = GaussianConditional('x2',d3, R3, 'l1', A21, 'x1', A22, sigma3); expected = GaussianBayesNet; expected.push_back(cg3); expected.push_back(cg2); expected.push_back(cg1); % Check one ordering fg1 = createGaussianFactorGraph(); ord1 = Ordering; ord1.push_back('x2'); ord1.push_back('l1'); ord1.push_back('x1'); actual1 = fg1.eliminate_(ord1); CHECK('eliminateAll', actual1.equals(expected,1e-5)); %----------------------------------------------------------------------- % matrix fg = createGaussianFactorGraph(); ord = Ordering; ord.push_back('x1'); ord.push_back('x2'); ord.push_back('l1'); [H,z] = fg.matrix(ord);