/** * @file testPose3.cpp * @brief Unit tests for Pose3 class */ #include #include "numericalDerivative.h" #include "Pose3.h" using namespace gtsam; Rot3 R = rodriguez(0.3,0,0); Point3 t(3.5,-8.2,4.2); Pose3 T(R,t); Point3 P(0.2,0.7,-2); Rot3 r1 = rodriguez(-90, 0, 0); Pose3 pose1(r1, Point3(1, 2, 3)); double error = 1e-8; #define PI 3.14159265358979323846 /* ************************************************************************* */ TEST( Pose3, equals) { Pose3 pose2 = pose1; CHECK(pose1.equals(pose2)); Pose3 origin; CHECK(!pose1.equals(origin)); } /* ************************************************************************* */ TEST( Pose3, expmap_a) { Pose3 id; Vector v(6); fill(v.begin(), v.end(), 0); v(0) = 0.3; CHECK(assert_equal(expmap(id,v), Pose3(R, Point3()))); v(3)=0.2;v(4)=0.7;v(5)=-2; CHECK(assert_equal(expmap(id,v), Pose3(R, P))); } TEST(Pose3, expmap_b) { Pose3 p1(Rot3(), Point3(100, 0, 0)); Pose3 p2 = expmap(p1, Vector_(6, 0.0, 0.0, 0.1, 0.0, 0.0, 0.0)); Pose3 expected(rodriguez(0.0, 0.0, 0.1), Point3(100.0, 0.0, 0.0)); CHECK(assert_equal(expected, p2)); } /* ************************************************************************* */ TEST( Pose3, compose ) { Rot3 R = rodriguez(0.3,0.2,0.1); Point3 t(3.5,-8.2,4.2); Pose3 T(R,t); Matrix actual = (T*T).matrix(); Matrix expected = T.matrix()*T.matrix(); CHECK(assert_equal(actual,expected,error)); Matrix numericalH1 = numericalDerivative21(compose, T, T, 1e-5); Matrix actualH1 = Dcompose1(T, T); CHECK(assert_equal(numericalH1,actualH1)); Matrix actualH2 = Dcompose2(T, T); Matrix numericalH2 = numericalDerivative22(compose, T, T, 1e-5); CHECK(assert_equal(numericalH2,actualH2));} /* ************************************************************************* */ TEST( Pose3, inverse) { Matrix actual = inverse(T).matrix(); Matrix expected = inverse(T.matrix()); CHECK(assert_equal(actual,expected,error)); Matrix numericalH = numericalDerivative11(inverse, T, 1e-5); Matrix actualH = Dinverse(T); CHECK(assert_equal(numericalH,actualH)); } /* ************************************************************************* */ TEST( Pose3, compose_inverse) { Matrix actual = (T*inverse(T)).matrix(); Matrix expected = eye(4,4); CHECK(assert_equal(actual,expected,error)); } /* ************************************************************************* */ TEST( Pose3, Dtransform_from1_a) { Matrix computed = Dtransform_from1(T, P); Matrix numerical = numericalDerivative21(transform_from,T,P); CHECK(assert_equal(numerical,computed,error)); } TEST( Pose3, Dtransform_from1_b) { Pose3 origin; Matrix computed = Dtransform_from1(origin, P); Matrix numerical = numericalDerivative21(transform_from,origin,P); CHECK(assert_equal(numerical,computed,error)); } TEST( Pose3, Dtransform_from1_c) { Point3 origin; Pose3 T0(R,origin); Matrix computed = Dtransform_from1(T0, P); Matrix numerical = numericalDerivative21(transform_from,T0,P); CHECK(assert_equal(numerical,computed,error)); } TEST( Pose3, Dtransform_from1_d) { Rot3 I; Point3 t0(100,0,0); Pose3 T0(I,t0); Matrix computed = Dtransform_from1(T0, P); //print(computed, "Dtransform_from1_d computed:"); Matrix numerical = numericalDerivative21(transform_from,T0,P); //print(numerical, "Dtransform_from1_d numerical:"); CHECK(assert_equal(numerical,computed,error)); } /* ************************************************************************* */ TEST( Pose3, Dtransform_from2) { Matrix computed = Dtransform_from2(T); Matrix numerical = numericalDerivative22(transform_from,T,P); CHECK(assert_equal(numerical,computed,error)); } /* ************************************************************************* */ TEST( Pose3, Dtransform_to1) { Matrix computed = Dtransform_to1(T, P); Matrix numerical = numericalDerivative21(transform_to,T,P); CHECK(assert_equal(numerical,computed,error)); } /* ************************************************************************* */ TEST( Pose3, Dtransform_to2) { Matrix computed = Dtransform_to2(T,P); Matrix numerical = numericalDerivative22(transform_to,T,P); CHECK(assert_equal(numerical,computed,error)); } /* ************************************************************************* */ TEST( Pose3, transform_to_translate) { Point3 actual = transform_to(Pose3(Rot3(), Point3(1, 2, 3)), Point3(10.,20.,30.)); Point3 expected(9.,18.,27.); CHECK(assert_equal(expected, actual)); } /* ************************************************************************* */ TEST( Pose3, transform_to_rotate) { Pose3 transform(rodriguez(0,0,-1.570796), Point3()); Point3 actual = transform_to(transform, Point3(2,1,10)); Point3 expected(-1,2,10); CHECK(assert_equal(expected, actual, 0.001)); } /* ************************************************************************* */ TEST( Pose3, transform_to) { Pose3 transform(rodriguez(0,0,-1.570796), Point3(2,4, 0)); Point3 actual = transform_to(transform, Point3(3,2,10)); Point3 expected(2,1,10); CHECK(assert_equal(expected, actual, 0.001)); } /* ************************************************************************* */ TEST( Pose3, transform_from) { Point3 actual = transform_from(pose1, Point3()); Point3 expected = Point3(1.,2.,3.); CHECK(assert_equal(expected, actual)); } /* ************************************************************************* */ TEST( Pose3, transform_roundtrip) { Point3 actual = transform_from(pose1, transform_to(pose1, Point3(12., -0.11,7.0))); Point3 expected(12., -0.11,7.0); CHECK(assert_equal(expected, actual)); } /* ************************************************************************* */ TEST( Pose3, transformPose_to_origin) { // transform to origin Pose3 actual = pose1.transform_to(Pose3()); CHECK(assert_equal(pose1, actual, error)); } /* ************************************************************************* */ TEST( Pose3, transformPose_to_itself) { // transform to itself Pose3 actual = pose1.transform_to(pose1); CHECK(assert_equal(Pose3(), actual, error)); } /* ************************************************************************* */ TEST( Pose3, transformPose_to_translation) { // transform translation only Rot3 r = rodriguez(-1.570796,0,0); Pose3 pose2(r, Point3(21.,32.,13.)); Pose3 actual = pose2.transform_to(Pose3(Rot3(), Point3(1,2,3))); Pose3 expected(r, Point3(20.,30.,10.)); CHECK(assert_equal(expected, actual, error)); } /* ************************************************************************* */ TEST( Pose3, transformPose_to_simple_rotate) { // transform translation only Rot3 r = rodriguez(0,0,-1.570796); Pose3 pose2(r, Point3(21.,32.,13.)); Pose3 transform(r, Point3(1,2,3)); Pose3 actual = pose2.transform_to(transform); Pose3 expected(Rot3(), Point3(-30.,20.,10.)); CHECK(assert_equal(expected, actual, 0.001)); } /* ************************************************************************* */ TEST( Pose3, transformPose_to) { // transform to Rot3 r = rodriguez(0,0,-1.570796); //-90 degree yaw Rot3 r2 = rodriguez(0,0,0.698131701); //40 degree yaw Pose3 pose2(r2, Point3(21.,32.,13.)); Pose3 transform(r, Point3(1,2,3)); Pose3 actual = pose2.transform_to(transform); Pose3 expected(rodriguez(0,0,2.26892803), Point3(-30.,20.,10.)); CHECK(assert_equal(expected, actual, 0.001)); } /* ************************************************************************* */ TEST( Pose3, composeTransform ) { // known transform Rot3 R1 = rodriguez(0, 0, -1.570796); Pose3 expected(R1, Point3(1, 2, 3)); // current Rot3 R2 = rodriguez(0, 0, 0.698131701); Pose3 current(R2, Point3(21., 32., 13.)); // target Pose3 target(rodriguez(0, 0, 2.26892803), Point3(-30., 20., 10.)); // calculate transform // todo: which should this be? //Pose3 actual = compose(current, target); Pose3 actual = between (target, current); //verify CHECK(assert_equal(expected, actual, 0.001)); } /* ************************************************************************* */ TEST(Pose3, manifold) { //cout << "manifold" << endl; Pose3 t1 = T; Pose3 t2 = pose1; Pose3 origin; Vector d12 = logmap(t1, t2); CHECK(assert_equal(t2, expmap(t1,d12))); // todo: richard - commented out because this tests for "compose-style" (new) expmap // CHECK(assert_equal(t2, expmap(origin,d12)*t1)); Vector d21 = logmap(t2, t1); CHECK(assert_equal(t1, expmap(t2,d21))); // todo: richard - commented out because this tests for "compose-style" (new) expmap // CHECK(assert_equal(t1, expmap(origin,d21)*t2)); // Check that log(t1,t2)=-log(t2,t1) - this holds even for incorrect expmap :-) CHECK(assert_equal(d12,-d21)); #ifdef SLOW_BUT_CORRECT_EXPMAP // todo: Frank - Below only works for correct "Agrawal06iros style expmap // lines in canonical coordinates correspond to Abelian subgroups in SE(3) Vector d = Vector_(6,0.1,0.2,0.3,0.4,0.5,0.6); // exp(-d)=inverse(exp(d)) CHECK(assert_equal(expmap(-d),inverse(expmap(d)))); // exp(5d)=exp(2*d+3*d)=exp(2*d)exp(3*d)=exp(3*d)exp(2*d) Pose3 T2 = expmap(2*d); Pose3 T3 = expmap(3*d); Pose3 T5 = expmap(5*d); CHECK(assert_equal(T5,T2*T3)); CHECK(assert_equal(T5,T3*T2)); #endif } /* ************************************************************************* */ TEST( Pose3, between ) { Rot3 R = rodriguez(0.3,0.2,0.1); Point3 t(3.5,-8.2,4.2); Pose3 T(R,t); Pose3 expected = pose1 * inverse(T); Matrix actualH1,actualH2; Pose3 actual = between(T, pose1, actualH1,actualH2); CHECK(assert_equal(expected,actual)); Matrix numericalH1 = numericalDerivative21(between , T, pose1, 1e-5); CHECK(assert_equal(numericalH1,actualH1)); // chain rule does not work ?? Matrix numericalH2 = numericalDerivative22(between , T, pose1, 1e-5); CHECK(assert_equal(numericalH2,actualH2)); } /* ************************************************************************* */ int main(){ TestResult tr; return TestRegistry::runAllTests(tr);} /* ************************************************************************* */