/** * @file testNonlinearOptimizer.cpp * @brief Unit tests for NonlinearOptimizer class * @author Frank Dellaert */ #include using namespace std; #include // for operator += using namespace boost::assign; #include #include using namespace boost; #define GTSAM_MAGIC_KEY #include "Matrix.h" #include "Ordering.h" #include "smallExample.h" #include "pose2SLAM.h" #include "GaussianFactorGraph.h" #include "NoiseModel.h" // template definitions #include "NonlinearFactorGraph-inl.h" #include "NonlinearOptimizer-inl.h" #include "SubgraphPreconditioner-inl.h" using namespace gtsam; using namespace example; typedef NonlinearOptimizer Optimizer; /* ************************************************************************* */ TEST( NonlinearOptimizer, delta ) { shared_ptr fg(new Graph( createNonlinearFactorGraph())); Optimizer::shared_config initial = sharedNoisyConfig(); // Expected configuration is the difference between the noisy config // and the ground-truth config. One step only because it's linear ! VectorConfig expected; Vector dl1(2); dl1(0) = -0.1; dl1(1) = 0.1; expected.insert("l1", dl1); Vector dx1(2); dx1(0) = -0.1; dx1(1) = -0.1; expected.insert("x1", dx1); Vector dx2(2); dx2(0) = 0.1; dx2(1) = -0.2; expected.insert("x2", dx2); // Check one ordering shared_ptr ord1(new Ordering()); *ord1 += "x2","l1","x1"; Optimizer::shared_solver solver; solver = Optimizer::shared_solver(new Optimizer::solver(ord1)); Optimizer optimizer1(fg, initial, solver); VectorConfig actual1 = optimizer1.linearizeAndOptimizeForDelta(); CHECK(assert_equal(actual1,expected)); // Check another shared_ptr ord2(new Ordering()); *ord2 += "x1","x2","l1"; solver = Optimizer::shared_solver(new Optimizer::solver(ord2)); Optimizer optimizer2(fg, initial, solver); VectorConfig actual2 = optimizer2.linearizeAndOptimizeForDelta(); CHECK(assert_equal(actual2,expected)); // And yet another... shared_ptr ord3(new Ordering()); *ord3 += "l1","x1","x2"; solver = Optimizer::shared_solver(new Optimizer::solver(ord3)); Optimizer optimizer3(fg, initial, solver); VectorConfig actual3 = optimizer3.linearizeAndOptimizeForDelta(); CHECK(assert_equal(actual3,expected)); } /* ************************************************************************* */ TEST( NonlinearOptimizer, iterateLM ) { // really non-linear factor graph shared_ptr fg(new Graph( createReallyNonlinearFactorGraph())); // config far from minimum Point2 x0(3,0); boost::shared_ptr config(new Config); config->insert(simulated2D::PoseKey(1), x0); // ordering shared_ptr ord(new Ordering()); ord->push_back("x1"); // create initial optimization state, with lambda=0 Optimizer::shared_solver solver(new Optimizer::solver(ord)); Optimizer optimizer(fg, config, solver, 0.); // normal iterate Optimizer iterated1 = optimizer.iterate(); // LM iterate with lambda 0 should be the same Optimizer iterated2 = optimizer.iterateLM(); // Try successive iterates. TODO: ugly pointers, better way ? Optimizer *pointer = new Optimizer(iterated2); for (int i=0;i<10;i++) { Optimizer* newOptimizer = new Optimizer(pointer->iterateLM()); delete pointer; pointer = newOptimizer; } delete(pointer); CHECK(assert_equal(*iterated1.config(), *iterated2.config(), 1e-9)); } /* ************************************************************************* */ TEST( NonlinearOptimizer, optimize ) { shared_ptr fg(new Graph( createReallyNonlinearFactorGraph())); // test error at minimum Point2 xstar(0,0); Config cstar; cstar.insert(simulated2D::PoseKey(1), xstar); DOUBLES_EQUAL(0.0,fg->error(cstar),0.0); // test error at initial = [(1-cos(3))^2 + (sin(3))^2]*50 = Point2 x0(3,3); boost::shared_ptr c0(new Config); c0->insert(simulated2D::PoseKey(1), x0); DOUBLES_EQUAL(199.0,fg->error(*c0),1e-3); // optimize parameters shared_ptr ord(new Ordering()); ord->push_back("x1"); double relativeThreshold = 1e-5; double absoluteThreshold = 1e-5; // initial optimization state is the same in both cases tested Optimizer::shared_solver solver(new Optimizer::solver(ord)); Optimizer optimizer(fg, c0, solver); // Gauss-Newton Optimizer actual1 = optimizer.gaussNewton(relativeThreshold, absoluteThreshold); DOUBLES_EQUAL(0,fg->error(*(actual1.config())),1e-3); // Levenberg-Marquardt Optimizer actual2 = optimizer.levenbergMarquardt(relativeThreshold, absoluteThreshold, Optimizer::SILENT); DOUBLES_EQUAL(0,fg->error(*(actual2.config())),1e-3); } /* ************************************************************************* */ TEST( NonlinearOptimizer, Factorization ) { typedef NonlinearOptimizer > Optimizer; boost::shared_ptr config(new Pose2Config); config->insert(1, Pose2(0.,0.,0.)); config->insert(2, Pose2(1.5,0.,0.)); boost::shared_ptr graph(new Pose2Graph); graph->addPrior(1, Pose2(0.,0.,0.), sharedSigma(3, 1e-10)); graph->addConstraint(1,2, Pose2(1.,0.,0.), sharedSigma(3, 1)); boost::shared_ptr ordering(new Ordering); ordering->push_back(Pose2Config::Key(1)); ordering->push_back(Pose2Config::Key(2)); Optimizer::shared_solver solver(new Factorization(ordering)); Optimizer optimizer(graph, config, solver); Optimizer optimized = optimizer.iterateLM(); Pose2Config expected; expected.insert(1, Pose2(0.,0.,0.)); expected.insert(2, Pose2(1.,0.,0.)); CHECK(assert_equal(expected, *optimized.config(), 1e-5)); } /* ************************************************************************* */ TEST( NonlinearOptimizer, SubgraphPCG ) { typedef NonlinearOptimizer > Optimizer; boost::shared_ptr config(new Pose2Config); config->insert(1, Pose2(0.,0.,0.)); config->insert(2, Pose2(1.5,0.,0.)); boost::shared_ptr graph(new Pose2Graph); graph->addPrior(1, Pose2(0.,0.,0.), sharedSigma(3, 1e-10)); graph->addConstraint(1,2, Pose2(1.,0.,0.), sharedSigma(3, 1)); double relativeThreshold = 1e-5; double absoluteThreshold = 1e-5; Optimizer::shared_solver solver(new SubgraphPCG(*graph, *config)); Optimizer optimizer(graph, config, solver); Optimizer optimized = optimizer.gaussNewton(relativeThreshold, absoluteThreshold, Optimizer::SILENT); Pose2Config expected; expected.insert(1, Pose2(0.,0.,0.)); expected.insert(2, Pose2(1.,0.,0.)); CHECK(assert_equal(expected, *optimized.config(), 1e-5)); } /* ************************************************************************* */ int main() { TestResult tr; return TestRegistry::runAllTests(tr); } /* ************************************************************************* */