/** * @file testMatrix.cpp * @brief Unit test for Matrix Library * @author Christian Potthast * @author Carlos Nieto **/ #include #include #include #include #include #include "Matrix.h" using namespace std; using namespace gtsam; static double inf = std::numeric_limits::infinity(); /* ************************************************************************* */ TEST( matrix, constructor_data ) { double data[] = {-5, 3, 0, -5 }; Matrix A = Matrix_(2,2,data); Matrix B(2,2); B(0,0) = -5 ; B(0,1) = 3; B(1,0) = 0 ; B(1,1) = -5; EQUALITY(A,B); } /* ************************************************************************* */ TEST( matrix, constructor_vector ) { double data[] = {-5, 3, 0, -5 }; Matrix A = Matrix_(2,2,data); Vector v(4); copy(data,data+4,v.begin()); Matrix B = Matrix_(2,2,v); // this one is column order ! EQUALITY(A,trans(B)); } /* ************************************************************************* */ TEST( matrix, Matrix_ ) { Matrix A = Matrix_(2,2, -5.0 , 3.0, 00.0, -5.0 ); Matrix B(2,2); B(0,0) = -5 ; B(0,1) = 3; B(1,0) = 0 ; B(1,1) = -5; EQUALITY(A,B); } /* ************************************************************************* */ TEST( matrix, row_major ) { Matrix A = Matrix_(2,2, 1.0, 2.0, 3.0, 4.0 ); const double * const a = &A(0,0); CHECK(a[0] == 1); CHECK(a[1] == 2); CHECK(a[2] == 3); CHECK(a[3] == 4); } /* ************************************************************************* */ TEST( matrix, collect1 ) { Matrix A = Matrix_(2,2, -5.0 , 3.0, 00.0, -5.0 ); Matrix B = Matrix_(2,3, -0.5 , 2.1, 1.1, 3.4 , 2.6 , 7.1); Matrix AB = collect(2, &A, &B); Matrix C(2,5); for(int i = 0; i < 2; i++) for(int j = 0; j < 2; j++) C(i,j) = A(i,j); for(int i = 0; i < 2; i++) for(int j = 0; j < 3; j++) C(i,j+2) = B(i,j); EQUALITY(C,AB); } /* ************************************************************************* */ TEST( matrix, collect2 ) { Matrix A = Matrix_(2,2, -5.0 , 3.0, 00.0, -5.0 ); Matrix B = Matrix_(2,3, -0.5 , 2.1, 1.1, 3.4 , 2.6 , 7.1); vector matrices; matrices.push_back(&A); matrices.push_back(&B); Matrix AB = collect(matrices); Matrix C(2,5); for(int i = 0; i < 2; i++) for(int j = 0; j < 2; j++) C(i,j) = A(i,j); for(int i = 0; i < 2; i++) for(int j = 0; j < 3; j++) C(i,j+2) = B(i,j); EQUALITY(C,AB); } /* ************************************************************************* */ TEST( matrix, collect3 ) { Matrix A, B; A = eye(2,3); B = eye(2,3); vector matrices; matrices.push_back(&A); matrices.push_back(&B); Matrix AB = collect(matrices, 2, 3); Matrix exp = Matrix_(2, 6, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0); EQUALITY(exp,AB); } /* ************************************************************************* */ TEST( matrix, stack ) { Matrix A = Matrix_(2,2, -5.0 , 3.0, 00.0, -5.0 ); Matrix B = Matrix_(3,2, -0.5 , 2.1, 1.1, 3.4 , 2.6 , 7.1); Matrix AB = stack(2, &A, &B); Matrix C(5,2); for(int i = 0; i < 2; i++) for(int j = 0; j < 2; j++) C(i,j) = A(i,j); for(int i = 0; i < 3; i++) for(int j = 0; j < 2; j++) C(i+2,j) = B(i,j); EQUALITY(C,AB); } /* ************************************************************************* */ TEST( matrix, column ) { Matrix A = Matrix_(4, 7, -1., 0., 1., 0., 0., 0., -0.2, 0., -1., 0., 1., 0., 0., 0.3, 1., 0., 0., 0., -1., 0., 0.2, 0., 1., 0., 0., 0., -1., -0.1); Vector a1 = column_(A, 0); Vector exp1 = Vector_(4, -1., 0., 1., 0.); CHECK(assert_equal(a1, exp1)); Vector a2 = column_(A, 3); Vector exp2 = Vector_(4, 0., 1., 0., 0.); CHECK(assert_equal(a2, exp2)); Vector a3 = column_(A, 6); Vector exp3 = Vector_(4, -0.2, 0.3, 0.2, -0.1); CHECK(assert_equal(a3, exp3)); } /* ************************************************************************* */ TEST( matrix, row ) { Matrix A = Matrix_(4, 7, -1., 0., 1., 0., 0., 0., -0.2, 0., -1., 0., 1., 0., 0., 0.3, 1., 0., 0., 0., -1., 0., 0.2, 0., 1., 0., 0., 0., -1., -0.1); Vector a1 = row_(A, 0); Vector exp1 = Vector_(7, -1., 0., 1., 0., 0., 0., -0.2); CHECK(assert_equal(a1, exp1)); Vector a2 = row_(A, 2); Vector exp2 = Vector_(7, 1., 0., 0., 0., -1., 0., 0.2); CHECK(assert_equal(a2, exp2)); Vector a3 = row_(A, 3); Vector exp3 = Vector_(7, 0., 1., 0., 0., 0., -1., -0.1); CHECK(assert_equal(a3, exp3)); } /* ************************************************************************* */ TEST( matrix, zeros ) { Matrix A(2,3); A(0,0) = 0 ; A(0,1) = 0; A(0,2) = 0; A(1,0) = 0 ; A(1,1) = 0; A(1,2) = 0; Matrix zero = zeros(2,3); EQUALITY(A , zero); } /* ************************************************************************* */ TEST( matrix, scale_columns ) { Matrix A(3,4); A(0,0) = 1.; A(0,1) = 1.; A(0,2)= 1.; A(0,3)= 1.; A(1,0) = 1.; A(1,1) = 1.; A(1,2)= 1.; A(1,3)= 1.; A(2,0) = 1.; A(2,1) = 1.; A(2,2)= 1.; A(2,3)= 1.; Vector v = Vector_(4, 2., 3., 4., 5.); Matrix actual = vector_scale(A,v); Matrix expected(3,4); expected(0,0) = 2.; expected(0,1) = 3.; expected(0,2)= 4.; expected(0,3)= 5.; expected(1,0) = 2.; expected(1,1) = 3.; expected(1,2)= 4.; expected(1,3)= 5.; expected(2,0) = 2.; expected(2,1) = 3.; expected(2,2)= 4.; expected(2,3)= 5.; CHECK(assert_equal(actual, expected)); } /* ************************************************************************* */ TEST( matrix, scale_rows ) { Matrix A(3,4); A(0,0) = 1.; A(0,1) = 1.; A(0,2)= 1.; A(0,3)= 1.; A(1,0) = 1.; A(1,1) = 1.; A(1,2)= 1.; A(1,3)= 1.; A(2,0) = 1.; A(2,1) = 1.; A(2,2)= 1.; A(2,3)= 1.; Vector v = Vector_(3, 2., 3., 4.); Matrix actual = vector_scale(v,A); Matrix expected(3,4); expected(0,0) = 2.; expected(0,1) = 2.; expected(0,2)= 2.; expected(0,3)= 2.; expected(1,0) = 3.; expected(1,1) = 3.; expected(1,2)= 3.; expected(1,3)= 3.; expected(2,0) = 4.; expected(2,1) = 4.; expected(2,2)= 4.; expected(2,3)= 4.; CHECK(assert_equal(actual, expected)); } /* ************************************************************************* */ TEST( matrix, equal ) { Matrix A(4,4); A(0,0) = -1; A(0,1) = 1; A(0,2)= 2; A(0,3)= 3; A(1,0) = 1; A(1,1) =-3; A(1,2)= 1; A(1,3)= 3; A(2,0) = 1; A(2,1) = 2; A(2,2)=-1; A(2,3)= 4; A(3,0) = 2; A(3,1) = 1; A(3,2)= 2; A(3,3)=-2; Matrix A2(A); Matrix A3(A); A3(3,3)=-2.1; CHECK(A==A2); CHECK(A!=A3); } /* ************************************************************************* */ TEST( matrix, equal_nan ) { Matrix A(4,4); A(0,0) = -1; A(0,1) = 1; A(0,2)= 2; A(0,3)= 3; A(1,0) = 1; A(1,1) =-3; A(1,2)= 1; A(1,3)= 3; A(2,0) = 1; A(2,1) = 2; A(2,2)=-1; A(2,3)= 4; A(3,0) = 2; A(3,1) = 1; A(3,2)= 2; A(3,3)=-2; Matrix A2(A); Matrix A3(A); A3(3,3)=inf; CHECK(A!=A3); } /* ************************************************************************* */ TEST( matrix, addition ) { Matrix A = Matrix_(2,2, 1.0, 2.0, 3.0, 4.0); Matrix B = Matrix_(2,2, 4.0, 3.0, 2.0, 1.0); Matrix C = Matrix_(2,2, 5.0, 5.0, 5.0, 5.0); EQUALITY(A+B,C); } /* ************************************************************************* */ TEST( matrix, addition_in_place ) { Matrix A = Matrix_(2,2, 1.0, 2.0, 3.0, 4.0); Matrix B = Matrix_(2,2, 4.0, 3.0, 2.0, 1.0); Matrix C = Matrix_(2,2, 5.0, 5.0, 5.0, 5.0); A += B; EQUALITY(A,C); } /* ************************************************************************* */ TEST( matrix, subtraction ) { Matrix A = Matrix_(2,2, 1.0, 2.0, 3.0, 4.0); Matrix B = Matrix_(2,2, 4.0, 3.0, 2.0, 1.0); Matrix C = Matrix_(2,2, -3.0, -1.0, 1.0, 3.0); EQUALITY(A-B,C); } /* ************************************************************************* */ TEST( matrix, subtraction_in_place ) { Matrix A = Matrix_(2,2, 1.0, 2.0, 3.0, 4.0); Matrix B = Matrix_(2,2, 4.0, 3.0, 2.0, 1.0); Matrix C = Matrix_(2,2, -3.0, -1.0, 1.0, 3.0); A -= B; EQUALITY(A,C); } /* ************************************************************************* */ TEST( matrix, multiplication ) { Matrix A(2,2); A(0,0) = -1; A(1,0) = 1; A(0,1) = 1; A(1,1) =-3; Matrix B(2,1); B(0,0) = 1.2; B(1,0) = 3.4; Matrix AB(2,1); AB(0,0) = 2.2; AB(1,0) = -9.; EQUALITY(A*B,AB); } /* ************************************************************************* */ TEST( matrix, scalar_matrix_multiplication ) { Vector result(2); Matrix A(2,2); A(0,0) = -1; A(1,0) = 1; A(0,1) = 1; A(1,1) =-3; Matrix B(2,2); B(0,0) = -10; B(1,0) = 10; B(0,1) = 10; B(1,1) =-30; EQUALITY((10*A),B); } /* ************************************************************************* */ TEST( matrix, matrix_vector_multiplication ) { Vector result(2); Matrix A = Matrix_(2,3, 1.0,2.0,3.0, 4.0,5.0,6.0 ); Vector v = Vector_(3,1.,2.,3.); Vector Av = Vector_(2,14.,32.); Vector AtAv = Vector_(3,142.,188.,234.); EQUALITY(A*v,Av); EQUALITY(A^Av,AtAv); } /* ************************************************************************* */ TEST( matrix, nrRowsAndnrCols ) { Matrix A(3,6); LONGS_EQUAL( A.size1() , 3 ); LONGS_EQUAL( A.size2() , 6 ); } /* ************************************************************************* */ TEST( matrix, scalar_divide ) { Matrix A(2,2); A(0,0) = 10; A(1,0) = 30; A(0,1) = 20; A(1,1) = 40; Matrix B(2,2); B(0,0) = 1; B(1,0) = 3; B(0,1) = 2; B(1,1) = 4; EQUALITY(B,A/10); } /* ************************************************************************* */ TEST( matrix, inverse ) { Matrix A(3,3); A(0,0)= 1; A(0,1)=2; A(0,2)=3; A(1,0)= 0; A(1,1)=4; A(1,2)=5; A(2,0)= 1; A(2,1)=0; A(2,2)=6; Matrix Ainv = inverse(A); CHECK(assert_equal(eye(3), A*Ainv)); CHECK(assert_equal(eye(3), Ainv*A)); Matrix expected(3,3); expected(0,0)= 1.0909; expected(0,1)=-0.5454; expected(0,2)=-0.0909; expected(1,0)= 0.2272; expected(1,1)= 0.1363; expected(1,2)=-0.2272; expected(2,0)= -0.1818; expected(2,1)= 0.0909; expected(2,2)=0.1818; CHECK(assert_equal(expected, Ainv, 1e-4)); // These two matrices failed before version 2003 because we called LU incorrectly Matrix lMg(Matrix_(3,3, 0.0, 1.0,-2.0, -1.0, 0.0, 1.0, 0.0, 0.0, 1.0)); CHECK(assert_equal(Matrix_(3,3, 0.0, -1.0, 1.0, 1.0, 0.0, 2.0, 0.0, 0.0, 1.0), inverse(lMg))); Matrix gMl(Matrix_(3,3, 0.0, -1.0, 1.0, 1.0, 0.0, 2.0, 0.0, 0.0, 1.0)); CHECK(assert_equal(Matrix_(3,3, 0.0, 1.0,-2.0, -1.0, 0.0, 1.0, 0.0, 0.0, 1.0), inverse(gMl))); } /* ************************************************************************* */ TEST( matrix, inverse2 ) { Matrix A(3,3); A(0,0)= 0; A(0,1)=-1; A(0,2)=1; A(1,0)= 1; A(1,1)= 0; A(1,2)=2; A(2,0)= 0; A(2,1)= 0; A(2,2)=1; Matrix Ainv = inverse(A); Matrix expected(3,3); expected(0,0)= 0; expected(0,1)=1; expected(0,2)=-2; expected(1,0)=-1; expected(1,1)=0; expected(1,2)= 1; expected(2,0)= 0; expected(2,1)=0; expected(2,2)= 1; CHECK(assert_equal(expected, Ainv, 1e-4)); } /* ************************************************************************* */ TEST( matrix, backsubtitution ) { // TEST ONE 2x2 matrix U1*x=b1 Vector expected1 = Vector_(2, 3.6250, -0.75); Matrix U22 = Matrix_(2, 2, 2., 3., 0., 4.); Vector b1 = U22*expected1; CHECK( assert_equal(expected1 , backSubstituteUpper(U22, b1), 0.000001)); // TEST TWO 3x3 matrix U2*x=b2 Vector expected2 = Vector_(3, 5.5, -8.5, 5.); Matrix U33 = Matrix_(3, 3, 3., 5., 6., 0., 2., 3., 0., 0., 1.); Vector b2 = U33*expected2; CHECK( assert_equal(expected2 , backSubstituteUpper(U33, b2), 0.000001)); // TEST THREE Lower triangular 3x3 matrix L3*x=b3 Vector expected3 = Vector_(3, 1., 1., 1.); Matrix L3 = trans(U33); Vector b3 = L3*expected3; CHECK( assert_equal(expected3 , backSubstituteLower(L3, b3), 0.000001)); // TEST FOUR Try the above with transpose backSubstituteUpper CHECK( assert_equal(expected3 , backSubstituteUpper(b3,U33), 0.000001)); } /* ************************************************************************* */ // unit tests for housholder transformation /* ************************************************************************* */ TEST( matrix, houseHolder ) { double data[] = {-5, 0, 5, 0, 0, 0, -1, 00, -5, 0, 5, 0, 0, 1.5, 10, 0, 0, 0,-10, 0, 2, 00, 10, 0, 0, 0,-10, -1}; // check in-place householder, with v vectors below diagonal double data1[] = { 11.1803, 0, -2.2361, 0, -8.9443, 0, 2.236, 0, 11.1803, 0, -2.2361, 0, -8.9443, -1.565, -0.618034, 0, 4.4721, 0, -4.4721, 0, 0, 0, -0.618034, 0, 4.4721, 0, -4.4721, 0.894 }; Matrix expected1 = Matrix_(4,7, data1); Matrix A1 = Matrix_(4, 7, data); householder_(A1,3); CHECK(assert_equal(expected1, A1, 1e-3)); // in-place, with zeros below diagonal double data2[] = { 11.1803, 0, -2.2361, 0, -8.9443, 0, 2.236, 0, 11.1803, 0, -2.2361, 0, -8.9443, -1.565, 0, 0, 4.4721, 0, -4.4721, 0, 0, 0, 0, 0, 4.4721, 0, -4.4721, 0.894 }; Matrix expected = Matrix_(4,7, data2); Matrix A2 = Matrix_(4, 7, data); householder(A2,3); CHECK(assert_equal(expected, A2, 1e-3)); } /* ************************************************************************* */ // unit test for qr factorization (and hence householder) // This behaves the same as QR in matlab: [Q,R] = qr(A), except for signs /* ************************************************************************* */ TEST( matrix, qr ) { double data[] = {-5, 0, 5, 0, 00, -5, 0, 5, 10, 0, 0, 0, 00, 10, 0, 0, 00, 0, 0,-10, 10, 0,-10, 0}; Matrix A = Matrix_(6, 4, data); double dataQ[] = { -0.3333, 0, 0.2981, 0, 0, -0.8944, 0000000, -0.4472, 0, 0.3651, -0.8165, 0, 00.6667, 0, 0.7454, 0, 0, 0, 0000000, 0.8944, 0, 0.1826, -0.4082, 0, 0000000, 0, 0, -0.9129, -0.4082, 0, 00.6667, 0, -0.5963, 0, 0, -0.4472, }; Matrix expectedQ = Matrix_(6,6, dataQ); double dataR[] = { 15, 0, -8.3333, 0, 00, 11.1803, 0, -2.2361, 00, 0, 7.4536, 0, 00, 0, 0, 10.9545, 00, 0, 0, 0, 00, 0, 0, 0, }; Matrix expectedR = Matrix_(6,4, dataR); Matrix Q,R; boost::tie(Q,R) = qr(A); CHECK(assert_equal(expectedQ, Q, 1e-4)); CHECK(assert_equal(expectedR, R, 1e-4)); CHECK(assert_equal(A, Q*R, 1e-14)); } /* ************************************************************************* */ TEST( matrix, sub ) { double data1[] = { -5, 0, 5, 0, 0, 0, 00, -5, 0, 5, 0, 0, 10, 0, 0, 0,-10, 0, 00, 10, 0, 0, 0,-10 }; Matrix A = Matrix_(4,6, data1); Matrix actual = sub(A,1,3,1,5); double data2[] = { -5, 0, 5, 0, 00, 0, 0,-10, }; Matrix expected = Matrix_(2,4, data2); EQUALITY(actual,expected); } /* ************************************************************************* */ TEST( matrix, trans ) { Matrix A = Matrix_(2,2, 1.0 ,3.0, 2.0, 4.0 ); Matrix B = Matrix_(2,2, 1.0 ,2.0, 3.0, 4.0 ); EQUALITY(trans(A),B); } /* ************************************************************************* */ TEST( matrix, row_major_access ) { Matrix A = Matrix_(2,2,1.0,2.0,3.0,4.0); const double* a = &A(0,0); DOUBLES_EQUAL(3,a[2],1e-9); } /* ************************************************************************* */ TEST( matrix, svd ) { double data[] = {2,1,0}; Vector v(3); copy(data,data+3,v.begin()); Matrix U1=eye(4,3), S1=diag(v), V1=eye(3,3), A=(U1*S1)*Matrix(trans(V1)); Matrix U,V; Vector s; svd(A,U,s,V); Matrix S=diag(s); EQUALITY(U*S*Matrix(trans(V)),A); EQUALITY(S,S1); } /* ************************************************************************* */ // update A, b // A' \define A_{S}-ar and b'\define b-ad // __attribute__ ((noinline)) // uncomment to prevent inlining when profiling static void updateAb(Matrix& A, Vector& b, int j, const Vector& a, const Vector& r, double d) { const size_t m = A.size1(), n = A.size2(); for (int i = 0; i < m; i++) { // update all rows double ai = a(i); b(i) -= ai * d; double *Aij = A.data().begin() + i * n + j + 1; const double *rptr = r.data().begin() + j + 1; // A(i,j+1:end) -= ai*r(j+1:end) for (int j2 = j + 1; j2 < n; j2++, Aij++, rptr++) *Aij -= ai * (*rptr); } } /* ************************************************************************* */ TEST( matrix, weighted_elimination ) { // create a matrix to eliminate Matrix A = Matrix_(4, 6, -1., 0., 1., 0., 0., 0., 0., -1., 0., 1., 0., 0., 1., 0., 0., 0., -1., 0., 0., 1., 0., 0., 0., -1.); Vector b = Vector_(4, -0.2, 0.3, 0.2, -0.1); Vector sigmas = Vector_(4, 0.2, 0.2, 0.1, 0.1); // expected values Matrix expectedR = Matrix_(4, 6, 1., 0., -0.2, 0., -0.8, 0., 0., 1., 0.,-0.2, 0., -0.8, 0., 0., 1., 0., -1., 0., 0., 0., 0., 1., 0., -1.); Vector d = Vector_(4, 0.2, -0.14, 0.0, 0.2); Vector newSigmas = Vector_(4, 0.0894427, 0.0894427, 0.223607, 0.223607); Vector r; double di, sigma; size_t i; // perform elimination Matrix A1 = A; Vector b1 = b; std::list > solution = weighted_eliminate(A1, b1, sigmas); // unpack and verify i=0; BOOST_FOREACH(boost::tie(r, di, sigma), solution) { CHECK(assert_equal(r, row(expectedR, i))); // verify r DOUBLES_EQUAL(d(i), di, 1e-8); // verify d DOUBLES_EQUAL(newSigmas(i), sigma, 1e-5); // verify sigma i += 1; } } /* ************************************************************************* */ TEST( matrix, inverse_square_root ) { Matrix measurement_covariance = Matrix_(3,3, 0.25, 0.0, 0.0, 0.0, 0.25, 0.0, 0.0, 0.0, 0.01 ); Matrix actual = inverse_square_root(measurement_covariance); Matrix expected = Matrix_(3,3, 2.0, 0.0, 0.0, 0.0, 2.0, 0.0, 0.0, 0.0, 10.0 ); EQUALITY(expected,actual); EQUALITY(measurement_covariance,inverse(actual*actual)); // Randomly generated test. This test really requires inverse to // be working well; if it's not, there's the possibility of a // bug in inverse masking a bug in this routine since we // use the same inverse routing inside inverse_square_root() // as we use here to check it. Matrix M = Matrix_(5, 5, 0.0785892, 0.0137923, -0.0142219, -0.0171880, 0.0028726, 0.0137923, 0.0908911, 0.0020775, -0.0101952, 0.0175868, -0.0142219, 0.0020775, 0.0973051, 0.0054906, 0.0047064, -0.0171880, -0.0101952, 0.0054906, 0.0892453, -0.0059468, 0.0028726, 0.0175868, 0.0047064, -0.0059468, 0.0816517); expected = Matrix_(5, 5, 3.567126953241796, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, -0.590030436566913, 3.362022286742925, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.618207860252376, -0.168166020746503, 3.253086082942785, 0.000000000000000, 0.000000000000000, 0.683045380655496, 0.283773848115276, -0.099969232183396, 3.433537147891568, 0.000000000000000, -0.006740136923185, -0.669325697387650, -0.169716689114923, 0.171493059476284, 3.583921085468937); EQUALITY(expected, inverse_square_root(M)); } /* *********************************************************************** */ // M was generated as the covariance of a set of random numbers. L that // we are checking against was generated via chol(M)' on octave TEST( matrix, cholesky ) { Matrix M = Matrix_(5, 5, 0.0874197, -0.0030860, 0.0116969, 0.0081463, 0.0048741, -0.0030860, 0.0872727, 0.0183073, 0.0125325, -0.0037363, 0.0116969, 0.0183073, 0.0966217, 0.0103894, -0.0021113, 0.0081463, 0.0125325, 0.0103894, 0.0747324, 0.0036415, 0.0048741, -0.0037363, -0.0021113, 0.0036415, 0.0909464); Matrix expected = Matrix_(5, 5, 0.295668226226627, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.000000000000000, -0.010437374483502, 0.295235094820875, 0.000000000000000, 0.000000000000000, 0.000000000000000, 0.039560896175007, 0.063407813693827, 0.301721866387571, 0.000000000000000, 0.000000000000000, 0.027552165831157, 0.043423266737274, 0.021695600982708, 0.267613525371710, 0.000000000000000, 0.016485031422565, -0.012072546984405, -0.006621889326331, 0.014405837566082, 0.300462176944247); EQUALITY(expected, cholesky(M)); } /* ************************************************************************* */ TEST( matrix, square_root_positive ) { Matrix cov = Matrix_(3,3, 4.0, 0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 100.0 ); Matrix expected = Matrix_(3,3, 2.0, 0.0, 0.0, 0.0, 2.0, 0.0, 0.0, 0.0, 10.0 ); Matrix actual = square_root_positive(cov); CHECK(assert_equal(expected, actual)); CHECK(assert_equal(cov, prod(trans(actual),actual))); } /* ************************************************************************* */ int main() { TestResult tr; return TestRegistry::runAllTests(tr); } /* ************************************************************************* */