/** * @file Rot3.cpp * @brief Rotation (internal: 3*3 matrix representation*) * @author Alireza Fathi * @author Christian Potthast * @author Frank Dellaert */ #include "Rot3.h" #include "Lie-inl.h" using namespace std; namespace gtsam { /** Explicit instantiation of base class to export members */ INSTANTIATE_LIE(Rot3); /* ************************************************************************* */ // static member functions to construct rotations Rot3 Rot3::Rx(double t) { double st = sin(t), ct = cos(t); return Rot3( 1, 0, 0, 0, ct,-st, 0, st, ct); } Rot3 Rot3::Ry(double t) { double st = sin(t), ct = cos(t); return Rot3( ct, 0, st, 0, 1, 0, -st, 0, ct); } Rot3 Rot3::Rz(double t) { double st = sin(t), ct = cos(t); return Rot3( ct,-st, 0, st, ct, 0, 0, 0, 1); } // Considerably faster than composing matrices above ! Rot3 Rot3::RzRyRx(double x, double y, double z) { double cx=cos(x),sx=sin(x); double cy=cos(y),sy=sin(y); double cz=cos(z),sz=sin(z); double ss_ = sx * sy; double cs_ = cx * sy; double sc_ = sx * cy; double cc_ = cx * cy; double c_s = cx * sz; double s_s = sx * sz; double _cs = cy * sz; double _cc = cy * cz; double s_c = sx * cz; double c_c = cx * cz; double ssc = ss_ * cz, csc = cs_ * cz, sss = ss_ * sz, css = cs_ * sz; return Rot3( _cc,- c_s + ssc, s_s + csc, _cs, c_c + sss, -s_c + css, -sy, sc_, cc_ ); } /* ************************************************************************* */ bool Rot3::equals(const Rot3 & R, double tol) const { return equal_with_abs_tol(matrix(), R.matrix(), tol); } /* ************************************************************************* */ Matrix Rot3::matrix() const { double r[] = { r1_.x(), r2_.x(), r3_.x(), r1_.y(), r2_.y(), r3_.y(), r1_.z(), r2_.z(), r3_.z() }; return Matrix_(3,3, r); } /* ************************************************************************* */ Matrix Rot3::transpose() const { double r[] = { r1_.x(), r1_.y(), r1_.z(), r2_.x(), r2_.y(), r2_.z(), r3_.x(), r3_.y(), r3_.z()}; return Matrix_(3,3, r); } /* ************************************************************************* */ Point3 Rot3::column(int index) const{ if(index == 3) return r3_; else if (index == 2) return r2_; else return r1_; // default returns r1 } /* ************************************************************************* */ Vector Rot3::xyz() const { Matrix I;Vector q; boost::tie(I,q)=RQ(matrix()); return q; } Vector Rot3::ypr() const { Vector q = xyz(); return Vector_(3,q(2),q(1),q(0)); } /* ************************************************************************* */ // Log map at identity - return the canonical coordinates of this rotation inline Vector logmap(const Rot3& R) { double tr = R.r1().x()+R.r2().y()+R.r3().z(); if (fabs(tr-3.0) < 1e-10) // when theta = 0, +-2pi, +-4pi, etc. return zero(3); else if (tr==-1.0) { // when theta = +-pi, +-3pi, +-5pi, etc. if(R.r3().z() != -1.0) return (boost::math::constants::pi() / sqrt(2.0+2.0*R.r3().z())) * Vector_(3, R.r3().x(), R.r3().y(), 1.0+R.r3().z()); else if(R.r2().y() != -1.0) return (boost::math::constants::pi() / sqrt(2.0+2.0*R.r2().y())) * Vector_(3, R.r2().x(), 1.0+R.r2().y(), R.r2().z()); else if(R.r1().x() != -1.0) return (boost::math::constants::pi() / sqrt(2.0+2.0*R.r1().x())) * Vector_(3, 1.0+R.r1().x(), R.r1().y(), R.r1().z()); } else { double theta = acos((tr-1.0)/2.0); return (theta/2.0/sin(theta))*Vector_(3, R.r2().z()-R.r3().y(), R.r3().x()-R.r1().z(), R.r1().y()-R.r2().x()); } } /* ************************************************************************* */ Rot3 rodriguez(const Vector& n, double t) { double n0 = n(0), n1=n(1), n2=n(2); double n00 = n0*n0, n11 = n1*n1, n22 = n2*n2; #ifndef NDEBUG double l_n = n00+n11+n22; if (fabs(l_n-1.0)>1e-9) throw domain_error("rodriguez: length of n should be 1"); #endif double ct = cos(t), st = sin(t), ct_1 = 1 - ct; double s0 = n0 * st, s1 = n1 * st, s2 = n2 * st; double C01 = ct_1*n0*n1, C02 = ct_1*n0*n2, C12 = ct_1*n1*n2; double C00 = ct_1*n00, C11 = ct_1*n11, C22 = ct_1*n22; Point3 r1 = Point3( ct + C00, s2 + C01, -s1 + C02); Point3 r2 = Point3(-s2 + C01, ct + C11, s0 + C12); Point3 r3 = Point3( s1 + C02, -s0 + C12, ct + C22); return Rot3(r1, r2, r3); } /* ************************************************************************* */ Rot3 rodriguez(const Vector& w) { double t = norm_2(w); if (t < 1e-5) return Rot3(); return rodriguez(w/t, t); } /* ************************************************************************* */ Point3 rotate(const Rot3& R, const Point3& p) { return R.r1() * p.x() + R.r2() * p.y() + R.r3() * p.z(); } /* ************************************************************************* */ Matrix Drotate1(const Rot3& R, const Point3& p) { Point3 q = R * p; return skewSymmetric(-q.x(), -q.y(), -q.z()); } /* ************************************************************************* */ Matrix Drotate2(const Rot3& R) { return R.matrix(); } /* ************************************************************************* */ Point3 unrotate(const Rot3& R, const Point3& p) { return Point3( R.r1().x() * p.x() + R.r1().y() * p.y() + R.r1().z() * p.z(), R.r2().x() * p.x() + R.r2().y() * p.y() + R.r2().z() * p.z(), R.r3().x() * p.x() + R.r3().y() * p.y() + R.r3().z() * p.z() ); } /* ************************************************************************* */ /** see libraries/caml/geometry/math.lyx, derivative of unrotate */ /* ************************************************************************* */ Matrix Dunrotate1(const Rot3 & R, const Point3 & p) { Point3 q = unrotate(R,p); return skewSymmetric(q.x(), q.y(), q.z()) * R.transpose(); } /* ************************************************************************* */ Matrix Dunrotate2(const Rot3 & R) { return R.transpose(); } /* ************************************************************************* */ Matrix Dcompose1(const Rot3& R1, const Rot3& R2){ return eye(3); } /* ************************************************************************* */ Matrix Dcompose2(const Rot3& R1, const Rot3& R2){ return R1.matrix(); } /* ************************************************************************* */ Matrix Dbetween1(const Rot3& R1, const Rot3& R2){ return -between(R1,R2).matrix(); } /* ************************************************************************* */ Matrix Dbetween2(const Rot3& R1, const Rot3& R2){ return eye(3); } /* ************************************************************************* */ pair RQ(const Matrix& A) { double x = -atan2(-A(2, 1), A(2, 2)); Rot3 Qx = Rot3::Rx(-x); Matrix B = A * Qx.matrix(); double y = -atan2(B(2, 0), B(2, 2)); Rot3 Qy = Rot3::Ry(-y); Matrix C = B * Qy.matrix(); double z = -atan2(-C(1, 0), C(1, 1)); Rot3 Qz = Rot3::Rz(-z); Matrix R = C * Qz.matrix(); Vector xyz = Vector_(3, x, y, z); return make_pair(R, xyz); } /* ************************************************************************* */ } // namespace gtsam