/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file TestSmartStereoProjectionPoseFactor.cpp * @brief Unit tests for ProjectionFactor Class * @author Chris Beall * @author Luca Carlone * @author Zsolt Kira * @date Sept 2013 */ #include #include #include #include #include #include #include #include using namespace std; using namespace boost::assign; using namespace gtsam; static bool isDebugTest = true; // make a realistic calibration matrix static double fov = 60; // degrees static size_t w=640,h=480; static double b = 1; static Cal3_S2Stereo::shared_ptr K(new Cal3_S2Stereo(fov,w,h,b)); static Cal3_S2Stereo::shared_ptr K2(new Cal3_S2Stereo(1500, 1200, 0, 640, 480,b)); static boost::shared_ptr Kbundler(new Cal3Bundler(500, 1e-3, 1e-3, 1000, 2000)); static double rankTol = 1.0; static double linThreshold = -1.0; // static bool manageDegeneracy = true; // Create a noise model for the pixel error static SharedNoiseModel model(noiseModel::Unit::Create(3)); // Convenience for named keys using symbol_shorthand::X; using symbol_shorthand::L; // tests data static Symbol x1('X', 1); static Symbol x2('X', 2); static Symbol x3('X', 3); static Key poseKey1(x1); static StereoPoint2 measurement1(323.0, 300.0, 240.0); //potentially use more reasonable measurement value? static Pose3 body_P_sensor1(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2), Point3(0.25, -0.10, 1.0)); typedef SmartStereoProjectionPoseFactor SmartFactor; typedef SmartStereoProjectionPoseFactor SmartFactorBundler; vector stereo_projectToMultipleCameras( const StereoCamera& cam1, const StereoCamera& cam2, const StereoCamera& cam3, Point3 landmark){ vector measurements_cam; StereoPoint2 cam1_uv1 = cam1.project(landmark); StereoPoint2 cam2_uv1 = cam2.project(landmark); StereoPoint2 cam3_uv1 = cam3.project(landmark); measurements_cam.push_back(cam1_uv1); measurements_cam.push_back(cam2_uv1); measurements_cam.push_back(cam3_uv1); return measurements_cam; } /* ************************************************************************* */ TEST( SmartStereoProjectionPoseFactor, Constructor) { fprintf(stderr,"Test 1 Complete"); SmartFactor::shared_ptr factor1(new SmartFactor()); } /* ************************************************************************* */ TEST( SmartStereoProjectionPoseFactor, Constructor2) { SmartFactor factor1(rankTol, linThreshold); } /* ************************************************************************* */ TEST( SmartStereoProjectionPoseFactor, Constructor3) { SmartFactor::shared_ptr factor1(new SmartFactor()); factor1->add(measurement1, poseKey1, model, K); } /* ************************************************************************* */ TEST( SmartStereoProjectionPoseFactor, Constructor4) { SmartFactor factor1(rankTol, linThreshold); factor1.add(measurement1, poseKey1, model, K); } /* ************************************************************************* */ TEST( SmartStereoProjectionPoseFactor, ConstructorWithTransform) { bool manageDegeneracy = true; bool enableEPI = false; SmartFactor factor1(rankTol, linThreshold, manageDegeneracy, enableEPI, body_P_sensor1); factor1.add(measurement1, poseKey1, model, K); } /* ************************************************************************* */ TEST( SmartStereoProjectionPoseFactor, Equals ) { SmartFactor::shared_ptr factor1(new SmartFactor()); factor1->add(measurement1, poseKey1, model, K); SmartFactor::shared_ptr factor2(new SmartFactor()); factor2->add(measurement1, poseKey1, model, K); CHECK(assert_equal(*factor1, *factor2)); } /* *************************************************************************/ TEST_UNSAFE( SmartStereoProjectionPoseFactor, noiseless ){ // cout << " ************************ SmartStereoProjectionPoseFactor: noisy ****************************" << endl; // create first camera. Looking along X-axis, 1 meter above ground plane (x-y) Pose3 level_pose = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1)); StereoCamera level_camera(level_pose, K2); // create second camera 1 meter to the right of first camera Pose3 level_pose_right = level_pose * Pose3(Rot3(), Point3(1,0,0)); StereoCamera level_camera_right(level_pose_right, K2); // landmark ~5 meters infront of camera Point3 landmark(5, 0.5, 1.2); // 1. Project two landmarks into two cameras and triangulate StereoPoint2 level_uv = level_camera.project(landmark); StereoPoint2 level_uv_right = level_camera_right.project(landmark); Values values; values.insert(x1, level_pose); values.insert(x2, level_pose_right); SmartFactor factor1; factor1.add(level_uv, x1, model, K2); factor1.add(level_uv_right, x2, model, K2); double actualError = factor1.error(values); double expectedError = 0.0; EXPECT_DOUBLES_EQUAL(expectedError, actualError, 1e-7); SmartFactor::Cameras cameras = factor1.cameras(values); double actualError2 = factor1.totalReprojectionError(cameras); EXPECT_DOUBLES_EQUAL(expectedError, actualError2, 1e-7); // test vector of errors //Vector actual = factor1.unwhitenedError(values); //EXPECT(assert_equal(zero(4),actual,1e-8)); } /* *************************************************************************/ TEST( SmartStereoProjectionPoseFactor, noisy ){ // cout << " ************************ SmartStereoProjectionPoseFactor: noisy ****************************" << endl; // create first camera. Looking along X-axis, 1 meter above ground plane (x-y) Pose3 level_pose = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1)); StereoCamera level_camera(level_pose, K2); // create second camera 1 meter to the right of first camera Pose3 level_pose_right = level_pose * Pose3(Rot3(), Point3(1,0,0)); StereoCamera level_camera_right(level_pose_right, K2); // landmark ~5 meters infront of camera Point3 landmark(5, 0.5, 1.2); // 1. Project two landmarks into two cameras and triangulate StereoPoint2 pixelError(0.2,0.2,0); StereoPoint2 level_uv = level_camera.project(landmark) + pixelError; StereoPoint2 level_uv_right = level_camera_right.project(landmark); Values values; values.insert(x1, level_pose); Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/10, 0., -M_PI/10), gtsam::Point3(0.5,0.1,0.3)); values.insert(x2, level_pose_right.compose(noise_pose)); SmartFactor::shared_ptr factor1(new SmartFactor()); factor1->add(level_uv, x1, model, K); factor1->add(level_uv_right, x2, model, K); double actualError1= factor1->error(values); SmartFactor::shared_ptr factor2(new SmartFactor()); vector measurements; measurements.push_back(level_uv); measurements.push_back(level_uv_right); std::vector< SharedNoiseModel > noises; noises.push_back(model); noises.push_back(model); std::vector< boost::shared_ptr > Ks; ///< shared pointer to calibration object (one for each camera) Ks.push_back(K); Ks.push_back(K); std::vector views; views.push_back(x1); views.push_back(x2); factor2->add(measurements, views, noises, Ks); double actualError2= factor2->error(values); DOUBLES_EQUAL(actualError1, actualError2, 1e-7); } /* *************************************************************************/ TEST( SmartStereoProjectionPoseFactor, 3poses_smart_projection_factor ){ cout << " ************************ SmartStereoProjectionPoseFactor: 3 cams + 3 landmarks **********************" << endl; // create first camera. Looking along X-axis, 1 meter above ground plane (x-y) Pose3 pose1 = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1)); StereoCamera cam1(pose1, K2); // create second camera 1 meter to the right of first camera Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1,0,0)); StereoCamera cam2(pose2, K2); // create third camera 1 meter above the first camera Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0,-1,0)); StereoCamera cam3(pose3, K2); // three landmarks ~5 meters infront of camera Point3 landmark1(5, 0.5, 1.2); Point3 landmark2(5, -0.5, 1.2); Point3 landmark3(3, 0, 3.0); // 1. Project three landmarks into three cameras and triangulate vector measurements_cam1 = stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark1); vector measurements_cam2 = stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark2); vector measurements_cam3 = stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark3); std::vector views; views.push_back(x1); views.push_back(x2); views.push_back(x3); SmartFactor::shared_ptr smartFactor1(new SmartFactor()); smartFactor1->add(measurements_cam1, views, model, K2); SmartFactor::shared_ptr smartFactor2(new SmartFactor()); smartFactor2->add(measurements_cam2, views, model, K2); SmartFactor::shared_ptr smartFactor3(new SmartFactor()); smartFactor3->add(measurements_cam3, views, model, K2); const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10); NonlinearFactorGraph graph; graph.push_back(smartFactor1); graph.push_back(smartFactor2); graph.push_back(smartFactor3); graph.push_back(PriorFactor(x1, pose1, noisePrior)); graph.push_back(PriorFactor(x2, pose2, noisePrior)); // Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/10, 0., -M_PI/10), gtsam::Point3(0.5,0.1,0.3)); // noise from regular projection factor test below Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/100, 0., -M_PI/100), gtsam::Point3(0.1,0.1,0.1)); // smaller noise Values values; values.insert(x1, pose1); values.insert(x2, pose2); // initialize third pose with some noise, we expect it to move back to original pose3 values.insert(x3, pose3*noise_pose); if(isDebugTest) values.at(x3).print("Smart: Pose3 before optimization: "); LevenbergMarquardtParams params; if(isDebugTest) params.verbosityLM = LevenbergMarquardtParams::TRYLAMBDA; if(isDebugTest) params.verbosity = NonlinearOptimizerParams::ERROR; Values result; gttic_(SmartStereoProjectionPoseFactor); LevenbergMarquardtOptimizer optimizer(graph, values, params); result = optimizer.optimize(); gttoc_(SmartStereoProjectionPoseFactor); tictoc_finishedIteration_(); // GaussianFactorGraph::shared_ptr GFG = graph.linearize(values); // VectorValues delta = GFG->optimize(); // result.print("results of 3 camera, 3 landmark optimization \n"); if(isDebugTest) result.at(x3).print("Smart: Pose3 after optimization: "); EXPECT(assert_equal(pose3,result.at(x3))); if(isDebugTest) tictoc_print_(); } /* *************************************************************************/ TEST( SmartStereoProjectionPoseFactor, jacobianSVD ){ std::vector views; views.push_back(x1); views.push_back(x2); views.push_back(x3); // create first camera. Looking along X-axis, 1 meter above ground plane (x-y) Pose3 pose1 = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1)); StereoCamera cam1(pose1, K); // create second camera 1 meter to the right of first camera Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1,0,0)); StereoCamera cam2(pose2, K); // create third camera 1 meter above the first camera Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0,-1,0)); StereoCamera cam3(pose3, K); // three landmarks ~5 meters infront of camera Point3 landmark1(5, 0.5, 1.2); Point3 landmark2(5, -0.5, 1.2); Point3 landmark3(3, 0, 3.0); // 1. Project three landmarks into three cameras and triangulate vector measurements_cam1 = stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark1); vector measurements_cam2 = stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark2); vector measurements_cam3 = stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark3); SmartFactor::shared_ptr smartFactor1(new SmartFactor(1, -1, false, false, boost::none, JACOBIAN_SVD)); smartFactor1->add(measurements_cam1, views, model, K); SmartFactor::shared_ptr smartFactor2(new SmartFactor(1, -1, false, false, boost::none, JACOBIAN_SVD)); smartFactor2->add(measurements_cam2, views, model, K); SmartFactor::shared_ptr smartFactor3(new SmartFactor(1, -1, false, false, boost::none, JACOBIAN_SVD)); smartFactor3->add(measurements_cam3, views, model, K); const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10); NonlinearFactorGraph graph; graph.push_back(smartFactor1); graph.push_back(smartFactor2); graph.push_back(smartFactor3); graph.push_back(PriorFactor(x1, pose1, noisePrior)); graph.push_back(PriorFactor(x2, pose2, noisePrior)); // Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/10, 0., -M_PI/10), gtsam::Point3(0.5,0.1,0.3)); // noise from regular projection factor test below Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/100, 0., -M_PI/100), gtsam::Point3(0.1,0.1,0.1)); // smaller noise Values values; values.insert(x1, pose1); values.insert(x2, pose2); values.insert(x3, pose3*noise_pose); LevenbergMarquardtParams params; Values result; LevenbergMarquardtOptimizer optimizer(graph, values, params); result = optimizer.optimize(); EXPECT(assert_equal(pose3,result.at(x3))); } /* *************************************************************************/ TEST( SmartStereoProjectionPoseFactor, landmarkDistance ){ double excludeLandmarksFutherThanDist = 2; std::vector views; views.push_back(x1); views.push_back(x2); views.push_back(x3); // create first camera. Looking along X-axis, 1 meter above ground plane (x-y) Pose3 pose1 = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1)); StereoCamera cam1(pose1, K); // create second camera 1 meter to the right of first camera Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1,0,0)); StereoCamera cam2(pose2, K); // create third camera 1 meter above the first camera Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0,-1,0)); StereoCamera cam3(pose3, K); // three landmarks ~5 meters infront of camera Point3 landmark1(5, 0.5, 1.2); Point3 landmark2(5, -0.5, 1.2); Point3 landmark3(3, 0, 3.0); // 1. Project three landmarks into three cameras and triangulate vector measurements_cam1 = stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark1); vector measurements_cam2 = stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark2); vector measurements_cam3 = stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark3); SmartFactor::shared_ptr smartFactor1(new SmartFactor(1, -1, false, false, boost::none, JACOBIAN_SVD, excludeLandmarksFutherThanDist)); smartFactor1->add(measurements_cam1, views, model, K); SmartFactor::shared_ptr smartFactor2(new SmartFactor(1, -1, false, false, boost::none, JACOBIAN_SVD, excludeLandmarksFutherThanDist)); smartFactor2->add(measurements_cam2, views, model, K); SmartFactor::shared_ptr smartFactor3(new SmartFactor(1, -1, false, false, boost::none, JACOBIAN_SVD, excludeLandmarksFutherThanDist)); smartFactor3->add(measurements_cam3, views, model, K); const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10); NonlinearFactorGraph graph; graph.push_back(smartFactor1); graph.push_back(smartFactor2); graph.push_back(smartFactor3); graph.push_back(PriorFactor(x1, pose1, noisePrior)); graph.push_back(PriorFactor(x2, pose2, noisePrior)); // Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/10, 0., -M_PI/10), gtsam::Point3(0.5,0.1,0.3)); // noise from regular projection factor test below Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/100, 0., -M_PI/100), gtsam::Point3(0.1,0.1,0.1)); // smaller noise Values values; values.insert(x1, pose1); values.insert(x2, pose2); values.insert(x3, pose3*noise_pose); // All factors are disabled and pose should remain where it is LevenbergMarquardtParams params; Values result; LevenbergMarquardtOptimizer optimizer(graph, values, params); result = optimizer.optimize(); EXPECT(assert_equal(values.at(x3),result.at(x3))); } /* *************************************************************************/ TEST( SmartStereoProjectionPoseFactor, dynamicOutlierRejection ){ double excludeLandmarksFutherThanDist = 1e10; double dynamicOutlierRejectionThreshold = 1; // max 1 pixel of average reprojection error std::vector views; views.push_back(x1); views.push_back(x2); views.push_back(x3); // create first camera. Looking along X-axis, 1 meter above ground plane (x-y) Pose3 pose1 = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1)); StereoCamera cam1(pose1, K); // create second camera 1 meter to the right of first camera Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1,0,0)); StereoCamera cam2(pose2, K); // create third camera 1 meter above the first camera Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0,-1,0)); StereoCamera cam3(pose3, K); // three landmarks ~5 meters infront of camera Point3 landmark1(5, 0.5, 1.2); Point3 landmark2(5, -0.5, 1.2); Point3 landmark3(3, 0, 3.0); Point3 landmark4(5, -0.5, 1); // 1. Project four landmarks into three cameras and triangulate vector measurements_cam1 = stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark1); vector measurements_cam2 = stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark2); vector measurements_cam3 = stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark3); vector measurements_cam4 = stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark4); measurements_cam4.at(0) = measurements_cam4.at(0) + StereoPoint2(10,10,1); // add outlier SmartFactor::shared_ptr smartFactor1(new SmartFactor(1, -1, false, false, boost::none, JACOBIAN_SVD, excludeLandmarksFutherThanDist, dynamicOutlierRejectionThreshold)); smartFactor1->add(measurements_cam1, views, model, K); SmartFactor::shared_ptr smartFactor2(new SmartFactor(1, -1, false, false, boost::none, JACOBIAN_SVD, excludeLandmarksFutherThanDist, dynamicOutlierRejectionThreshold)); smartFactor2->add(measurements_cam2, views, model, K); SmartFactor::shared_ptr smartFactor3(new SmartFactor(1, -1, false, false, boost::none, JACOBIAN_SVD, excludeLandmarksFutherThanDist, dynamicOutlierRejectionThreshold)); smartFactor3->add(measurements_cam3, views, model, K); SmartFactor::shared_ptr smartFactor4(new SmartFactor(1, -1, false, false, boost::none, JACOBIAN_SVD, excludeLandmarksFutherThanDist, dynamicOutlierRejectionThreshold)); smartFactor4->add(measurements_cam4, views, model, K); const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10); NonlinearFactorGraph graph; graph.push_back(smartFactor1); graph.push_back(smartFactor2); graph.push_back(smartFactor3); graph.push_back(smartFactor4); graph.push_back(PriorFactor(x1, pose1, noisePrior)); graph.push_back(PriorFactor(x2, pose2, noisePrior)); Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/100, 0., -M_PI/100), gtsam::Point3(0.1,0.1,0.1)); // smaller noise Values values; values.insert(x1, pose1); values.insert(x2, pose2); values.insert(x3, pose3); // All factors are disabled and pose should remain where it is LevenbergMarquardtParams params; Values result; LevenbergMarquardtOptimizer optimizer(graph, values, params); result = optimizer.optimize(); EXPECT(assert_equal(pose3,result.at(x3))); } // ///* *************************************************************************/ //TEST( SmartStereoProjectionPoseFactor, jacobianQ ){ // // std::vector views; // views.push_back(x1); // views.push_back(x2); // views.push_back(x3); // // // create first camera. Looking along X-axis, 1 meter above ground plane (x-y) // Pose3 pose1 = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1)); // StereoCamera cam1(pose1, K); // // create second camera 1 meter to the right of first camera // Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1,0,0)); // StereoCamera cam2(pose2, K); // // create third camera 1 meter above the first camera // Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0,-1,0)); // StereoCamera cam3(pose3, K); // // // three landmarks ~5 meters infront of camera // Point3 landmark1(5, 0.5, 1.2); // Point3 landmark2(5, -0.5, 1.2); // Point3 landmark3(3, 0, 3.0); // // vector measurements_cam1, measurements_cam2, measurements_cam3; // // // 1. Project three landmarks into three cameras and triangulate // stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1); // stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2); // stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3); // // SmartFactor::shared_ptr smartFactor1(new SmartFactor(1, -1, false, false, boost::none, JACOBIAN_Q)); // smartFactor1->add(measurements_cam1, views, model, K); // // SmartFactor::shared_ptr smartFactor2(new SmartFactor(1, -1, false, false, boost::none, JACOBIAN_Q)); // smartFactor2->add(measurements_cam2, views, model, K); // // SmartFactor::shared_ptr smartFactor3(new SmartFactor(1, -1, false, false, boost::none, JACOBIAN_Q)); // smartFactor3->add(measurements_cam3, views, model, K); // // const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10); // // NonlinearFactorGraph graph; // graph.push_back(smartFactor1); // graph.push_back(smartFactor2); // graph.push_back(smartFactor3); // graph.push_back(PriorFactor(x1, pose1, noisePrior)); // graph.push_back(PriorFactor(x2, pose2, noisePrior)); // // // Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/10, 0., -M_PI/10), gtsam::Point3(0.5,0.1,0.3)); // noise from regular projection factor test below // Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/100, 0., -M_PI/100), gtsam::Point3(0.1,0.1,0.1)); // smaller noise // Values values; // values.insert(x1, pose1); // values.insert(x2, pose2); // values.insert(x3, pose3*noise_pose); // // LevenbergMarquardtParams params; // Values result; // LevenbergMarquardtOptimizer optimizer(graph, values, params); // result = optimizer.optimize(); // EXPECT(assert_equal(pose3,result.at(x3))); //} // ///* *************************************************************************/ //TEST( SmartStereoProjectionPoseFactor, 3poses_projection_factor ){ // // cout << " ************************ Normal ProjectionFactor: 3 cams + 3 landmarks **********************" << endl; // // std::vector views; // views.push_back(x1); // views.push_back(x2); // views.push_back(x3); // // // create first camera. Looking along X-axis, 1 meter above ground plane (x-y) // Pose3 pose1 = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1)); // StereoCamera cam1(pose1, K2); // // // create second camera 1 meter to the right of first camera // Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1,0,0)); // StereoCamera cam2(pose2, K2); // // // create third camera 1 meter above the first camera // Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0,-1,0)); // StereoCamera cam3(pose3, K2); // // // three landmarks ~5 meters infront of camera // Point3 landmark1(5, 0.5, 1.2); // Point3 landmark2(5, -0.5, 1.2); // Point3 landmark3(3, 0, 3.0); // // typedef GenericStereoFactor ProjectionFactor; // NonlinearFactorGraph graph; // // // 1. Project three landmarks into three cameras and triangulate // graph.push_back(ProjectionFactor(cam1.project(landmark1), model, x1, L(1), K2)); // graph.push_back(ProjectionFactor(cam2.project(landmark1), model, x2, L(1), K2)); // graph.push_back(ProjectionFactor(cam3.project(landmark1), model, x3, L(1), K2)); // // graph.push_back(ProjectionFactor(cam1.project(landmark2), model, x1, L(2), K2)); // graph.push_back(ProjectionFactor(cam2.project(landmark2), model, x2, L(2), K2)); // graph.push_back(ProjectionFactor(cam3.project(landmark2), model, x3, L(2), K2)); // // graph.push_back(ProjectionFactor(cam1.project(landmark3), model, x1, L(3), K2)); // graph.push_back(ProjectionFactor(cam2.project(landmark3), model, x2, L(3), K2)); // graph.push_back(ProjectionFactor(cam3.project(landmark3), model, x3, L(3), K2)); // // const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10); // graph.push_back(PriorFactor(x1, pose1, noisePrior)); // graph.push_back(PriorFactor(x2, pose2, noisePrior)); // // Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/10, 0., -M_PI/10), gtsam::Point3(0.5,0.1,0.3)); // Values values; // values.insert(x1, pose1); // values.insert(x2, pose2); // values.insert(x3, pose3* noise_pose); // values.insert(L(1), landmark1); // values.insert(L(2), landmark2); // values.insert(L(3), landmark3); // if(isDebugTest) values.at(x3).print("Pose3 before optimization: "); // // LevenbergMarquardtParams params; // if(isDebugTest) params.verbosityLM = LevenbergMarquardtParams::TRYLAMBDA; // if(isDebugTest) params.verbosity = NonlinearOptimizerParams::ERROR; // LevenbergMarquardtOptimizer optimizer(graph, values, params); // Values result = optimizer.optimize(); // // if(isDebugTest) result.at(x3).print("Pose3 after optimization: "); // EXPECT(assert_equal(pose3,result.at(x3))); //} // /* *************************************************************************/ TEST( SmartStereoProjectionPoseFactor, CheckHessian){ std::vector views; views.push_back(x1); views.push_back(x2); views.push_back(x3); // create first camera. Looking along X-axis, 1 meter above ground plane (x-y) Pose3 pose1 = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1)); StereoCamera cam1(pose1, K); // create second camera 1 meter to the right of first camera Pose3 pose2 = pose1 * Pose3(Rot3::RzRyRx(-0.05, 0.0, -0.05), Point3(0,0,0)); StereoCamera cam2(pose2, K); // create third camera 1 meter above the first camera Pose3 pose3 = pose2 * Pose3(Rot3::RzRyRx(-0.05, 0.0, -0.05), Point3(0,0,0)); StereoCamera cam3(pose3, K); // three landmarks ~5 meters infront of camera Point3 landmark1(5, 0.5, 1.2); Point3 landmark2(5, -0.5, 1.2); Point3 landmark3(3, 0, 3.0); // 1. Project three landmarks into three cameras and triangulate vector measurements_cam1 = stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark1); vector measurements_cam2 = stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark2); vector measurements_cam3 = stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark3); double rankTol = 10; SmartFactor::shared_ptr smartFactor1(new SmartFactor(rankTol)); smartFactor1->add(measurements_cam1, views, model, K); SmartFactor::shared_ptr smartFactor2(new SmartFactor(rankTol)); smartFactor2->add(measurements_cam2, views, model, K); SmartFactor::shared_ptr smartFactor3(new SmartFactor(rankTol)); smartFactor3->add(measurements_cam3, views, model, K); NonlinearFactorGraph graph; graph.push_back(smartFactor1); graph.push_back(smartFactor2); graph.push_back(smartFactor3); // Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/10, 0., -M_PI/10), gtsam::Point3(0.5,0.1,0.3)); // noise from regular projection factor test below Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/100, 0., -M_PI/100), gtsam::Point3(0.1,0.1,0.1)); // smaller noise Values values; values.insert(x1, pose1); values.insert(x2, pose2); // initialize third pose with some noise, we expect it to move back to original pose3 values.insert(x3, pose3*noise_pose); if(isDebugTest) values.at(x3).print("Smart: Pose3 before optimization: "); boost::shared_ptr hessianFactor1 = smartFactor1->linearize(values); boost::shared_ptr hessianFactor2 = smartFactor2->linearize(values); boost::shared_ptr hessianFactor3 = smartFactor3->linearize(values); Matrix CumulativeInformation = hessianFactor1->information() + hessianFactor2->information() + hessianFactor3->information(); boost::shared_ptr GaussianGraph = graph.linearize(values); Matrix GraphInformation = GaussianGraph->hessian().first; // Check Hessian EXPECT(assert_equal(GraphInformation, CumulativeInformation, 1e-8)); Matrix AugInformationMatrix = hessianFactor1->augmentedInformation() + hessianFactor2->augmentedInformation() + hessianFactor3->augmentedInformation(); // Check Information vector // cout << AugInformationMatrix.size() << endl; Vector InfoVector = AugInformationMatrix.block(0,18,18,1); // 18x18 Hessian + information vector // Check Hessian EXPECT(assert_equal(InfoVector, GaussianGraph->hessian().second, 1e-8)); } // ///* *************************************************************************/ //TEST( SmartStereoProjectionPoseFactor, 3poses_2land_rotation_only_smart_projection_factor ){ // // cout << " ************************ SmartStereoProjectionPoseFactor: 3 cams + 2 landmarks: Rotation Only**********************" << endl; // // std::vector views; // views.push_back(x1); // views.push_back(x2); // views.push_back(x3); // // // create first camera. Looking along X-axis, 1 meter above ground plane (x-y) // Pose3 pose1 = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1)); // StereoCamera cam1(pose1, K2); // // // create second camera 1 meter to the right of first camera // Pose3 pose2 = pose1 * Pose3(Rot3::RzRyRx(-0.05, 0.0, -0.05), Point3(0,0,0)); // StereoCamera cam2(pose2, K2); // // // create third camera 1 meter above the first camera // Pose3 pose3 = pose2 * Pose3(Rot3::RzRyRx(-0.05, 0.0, -0.05), Point3(0,0,0)); // StereoCamera cam3(pose3, K2); // // // three landmarks ~5 meters infront of camera // Point3 landmark1(5, 0.5, 1.2); // Point3 landmark2(5, -0.5, 1.2); // // vector measurements_cam1, measurements_cam2, measurements_cam3; // // // 1. Project three landmarks into three cameras and triangulate // stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1); // stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2); // // double rankTol = 50; // SmartFactor::shared_ptr smartFactor1(new SmartFactor(rankTol, linThreshold, manageDegeneracy)); // smartFactor1->add(measurements_cam1, views, model, K2); // // SmartFactor::shared_ptr smartFactor2(new SmartFactor(rankTol, linThreshold, manageDegeneracy)); // smartFactor2->add(measurements_cam2, views, model, K2); // // const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10); // const SharedDiagonal noisePriorTranslation = noiseModel::Isotropic::Sigma(3, 0.10); // Point3 positionPrior = gtsam::Point3(0,0,1); // // NonlinearFactorGraph graph; // graph.push_back(smartFactor1); // graph.push_back(smartFactor2); // graph.push_back(PriorFactor(x1, pose1, noisePrior)); // graph.push_back(PoseTranslationPrior(x2, positionPrior, noisePriorTranslation)); // graph.push_back(PoseTranslationPrior(x3, positionPrior, noisePriorTranslation)); // // Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/10, 0., -M_PI/10), gtsam::Point3(0.1,0.1,0.1)); // smaller noise // Values values; // values.insert(x1, pose1); // values.insert(x2, pose2*noise_pose); // // initialize third pose with some noise, we expect it to move back to original pose3 // values.insert(x3, pose3*noise_pose*noise_pose); // if(isDebugTest) values.at(x3).print("Smart: Pose3 before optimization: "); // // LevenbergMarquardtParams params; // if(isDebugTest) params.verbosityLM = LevenbergMarquardtParams::TRYDELTA; // if(isDebugTest) params.verbosity = NonlinearOptimizerParams::ERROR; // // Values result; // gttic_(SmartStereoProjectionPoseFactor); // LevenbergMarquardtOptimizer optimizer(graph, values, params); // result = optimizer.optimize(); // gttoc_(SmartStereoProjectionPoseFactor); // tictoc_finishedIteration_(); // // // result.print("results of 3 camera, 3 landmark optimization \n"); // if(isDebugTest) result.at(x3).print("Smart: Pose3 after optimization: "); // std::cout << "TEST COMMENTED: rotation only version of smart factors has been deprecated " << std::endl; // // EXPECT(assert_equal(pose3,result.at(x3))); // if(isDebugTest) tictoc_print_(); //} // ///* *************************************************************************/ //TEST( SmartStereoProjectionPoseFactor, 3poses_rotation_only_smart_projection_factor ){ // // cout << " ************************ SmartStereoProjectionPoseFactor: 3 cams + 3 landmarks: Rotation Only**********************" << endl; // // std::vector views; // views.push_back(x1); // views.push_back(x2); // views.push_back(x3); // // // create first camera. Looking along X-axis, 1 meter above ground plane (x-y) // Pose3 pose1 = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1)); // StereoCamera cam1(pose1, K); // // // create second camera 1 meter to the right of first camera // Pose3 pose2 = pose1 * Pose3(Rot3::RzRyRx(-0.05, 0.0, -0.05), Point3(0,0,0)); // StereoCamera cam2(pose2, K); // // // create third camera 1 meter above the first camera // Pose3 pose3 = pose2 * Pose3(Rot3::RzRyRx(-0.05, 0.0, -0.05), Point3(0,0,0)); // StereoCamera cam3(pose3, K); // // // three landmarks ~5 meters infront of camera // Point3 landmark1(5, 0.5, 1.2); // Point3 landmark2(5, -0.5, 1.2); // Point3 landmark3(3, 0, 3.0); // // vector measurements_cam1, measurements_cam2, measurements_cam3; // // // 1. Project three landmarks into three cameras and triangulate // stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1); // stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2); // stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3); // // double rankTol = 10; // // SmartFactor::shared_ptr smartFactor1(new SmartFactor(rankTol, linThreshold, manageDegeneracy)); // smartFactor1->add(measurements_cam1, views, model, K); // // SmartFactor::shared_ptr smartFactor2(new SmartFactor(rankTol, linThreshold, manageDegeneracy)); // smartFactor2->add(measurements_cam2, views, model, K); // // SmartFactor::shared_ptr smartFactor3(new SmartFactor(rankTol, linThreshold, manageDegeneracy)); // smartFactor3->add(measurements_cam3, views, model, K); // // const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10); // const SharedDiagonal noisePriorTranslation = noiseModel::Isotropic::Sigma(3, 0.10); // Point3 positionPrior = gtsam::Point3(0,0,1); // // NonlinearFactorGraph graph; // graph.push_back(smartFactor1); // graph.push_back(smartFactor2); // graph.push_back(smartFactor3); // graph.push_back(PriorFactor(x1, pose1, noisePrior)); // graph.push_back(PoseTranslationPrior(x2, positionPrior, noisePriorTranslation)); // graph.push_back(PoseTranslationPrior(x3, positionPrior, noisePriorTranslation)); // // // Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/10, 0., -M_PI/10), gtsam::Point3(0.5,0.1,0.3)); // noise from regular projection factor test below // Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/100, 0., -M_PI/100), gtsam::Point3(0.1,0.1,0.1)); // smaller noise // Values values; // values.insert(x1, pose1); // values.insert(x2, pose2); // // initialize third pose with some noise, we expect it to move back to original pose3 // values.insert(x3, pose3*noise_pose); // if(isDebugTest) values.at(x3).print("Smart: Pose3 before optimization: "); // // LevenbergMarquardtParams params; // if(isDebugTest) params.verbosityLM = LevenbergMarquardtParams::TRYDELTA; // if(isDebugTest) params.verbosity = NonlinearOptimizerParams::ERROR; // // Values result; // gttic_(SmartStereoProjectionPoseFactor); // LevenbergMarquardtOptimizer optimizer(graph, values, params); // result = optimizer.optimize(); // gttoc_(SmartStereoProjectionPoseFactor); // tictoc_finishedIteration_(); // // // result.print("results of 3 camera, 3 landmark optimization \n"); // if(isDebugTest) result.at(x3).print("Smart: Pose3 after optimization: "); // std::cout << "TEST COMMENTED: rotation only version of smart factors has been deprecated " << std::endl; // // EXPECT(assert_equal(pose3,result.at(x3))); // if(isDebugTest) tictoc_print_(); //} // ///* *************************************************************************/ //TEST( SmartStereoProjectionPoseFactor, Hessian ){ // // cout << " ************************ SmartStereoProjectionPoseFactor: Hessian **********************" << endl; // // std::vector views; // views.push_back(x1); // views.push_back(x2); // // // create first camera. Looking along X-axis, 1 meter above ground plane (x-y) // Pose3 pose1 = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1)); // StereoCamera cam1(pose1, K2); // // // create second camera 1 meter to the right of first camera // Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1,0,0)); // StereoCamera cam2(pose2, K2); // // // three landmarks ~5 meters infront of camera // Point3 landmark1(5, 0.5, 1.2); // // // 1. Project three landmarks into three cameras and triangulate // StereoPoint2 cam1_uv1 = cam1.project(landmark1); // StereoPoint2 cam2_uv1 = cam2.project(landmark1); // vector measurements_cam1; // measurements_cam1.push_back(cam1_uv1); // measurements_cam1.push_back(cam2_uv1); // // SmartFactor::shared_ptr smartFactor1(new SmartFactor()); // smartFactor1->add(measurements_cam1,views, model, K2); // // Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/10, 0., -M_PI/10), gtsam::Point3(0.5,0.1,0.3)); // Values values; // values.insert(x1, pose1); // values.insert(x2, pose2); // // boost::shared_ptr hessianFactor = smartFactor1->linearize(values); // if(isDebugTest) hessianFactor->print("Hessian factor \n"); // // // compute triangulation from linearization point // // compute reprojection errors (sum squared) // // compare with hessianFactor.info(): the bottom right element is the squared sum of the reprojection errors (normalized by the covariance) // // check that it is correctly scaled when using noiseProjection = [1/4 0; 0 1/4] //} // /* *************************************************************************/ TEST( SmartStereoProjectionPoseFactor, HessianWithRotation ){ // cout << " ************************ SmartStereoProjectionPoseFactor: rotated Hessian **********************" << endl; std::vector views; views.push_back(x1); views.push_back(x2); views.push_back(x3); // create first camera. Looking along X-axis, 1 meter above ground plane (x-y) Pose3 pose1 = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1)); StereoCamera cam1(pose1, K); // create second camera 1 meter to the right of first camera Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1,0,0)); StereoCamera cam2(pose2, K); // create third camera 1 meter above the first camera Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0,-1,0)); StereoCamera cam3(pose3, K); Point3 landmark1(5, 0.5, 1.2); vector measurements_cam1 = stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark1); SmartFactor::shared_ptr smartFactorInstance(new SmartFactor()); smartFactorInstance->add(measurements_cam1, views, model, K); Values values; values.insert(x1, pose1); values.insert(x2, pose2); values.insert(x3, pose3); boost::shared_ptr hessianFactor = smartFactorInstance->linearize(values); // hessianFactor->print("Hessian factor \n"); Pose3 poseDrift = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,0)); Values rotValues; rotValues.insert(x1, poseDrift.compose(pose1)); rotValues.insert(x2, poseDrift.compose(pose2)); rotValues.insert(x3, poseDrift.compose(pose3)); boost::shared_ptr hessianFactorRot = smartFactorInstance->linearize(rotValues); // hessianFactorRot->print("Hessian factor \n"); // Hessian is invariant to rotations in the nondegenerate case EXPECT(assert_equal(hessianFactor->information(), hessianFactorRot->information(), 1e-8) ); Pose3 poseDrift2 = Pose3(Rot3::ypr(-M_PI/2, -M_PI/3, -M_PI/2), gtsam::Point3(10,-4,5)); Values tranValues; tranValues.insert(x1, poseDrift2.compose(pose1)); tranValues.insert(x2, poseDrift2.compose(pose2)); tranValues.insert(x3, poseDrift2.compose(pose3)); boost::shared_ptr hessianFactorRotTran = smartFactorInstance->linearize(tranValues); // Hessian is invariant to rotations and translations in the nondegenerate case EXPECT(assert_equal(hessianFactor->information(), hessianFactorRotTran->information(), 1e-8) ); } /* *************************************************************************/ TEST( SmartStereoProjectionPoseFactor, HessianWithRotationDegenerate ){ // cout << " ************************ SmartStereoProjectionPoseFactor: rotated Hessian (degenerate) **********************" << endl; std::vector views; views.push_back(x1); views.push_back(x2); views.push_back(x3); // create first camera. Looking along X-axis, 1 meter above ground plane (x-y) Pose3 pose1 = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1)); StereoCamera cam1(pose1, K2); // Second and third cameras in same place, which is a degenerate configuration Pose3 pose2 = pose1; Pose3 pose3 = pose1; StereoCamera cam2(pose2, K2); StereoCamera cam3(pose3, K2); Point3 landmark1(5, 0.5, 1.2); vector measurements_cam1 = stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark1); SmartFactor::shared_ptr smartFactor(new SmartFactor()); smartFactor->add(measurements_cam1, views, model, K2); Values values; values.insert(x1, pose1); values.insert(x2, pose2); values.insert(x3, pose3); boost::shared_ptr hessianFactor = smartFactor->linearize(values); if(isDebugTest) hessianFactor->print("Hessian factor \n"); Pose3 poseDrift = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,0)); Values rotValues; rotValues.insert(x1, poseDrift.compose(pose1)); rotValues.insert(x2, poseDrift.compose(pose2)); rotValues.insert(x3, poseDrift.compose(pose3)); boost::shared_ptr hessianFactorRot = smartFactor->linearize(rotValues); if(isDebugTest) hessianFactorRot->print("Hessian factor \n"); // Hessian is invariant to rotations in the nondegenerate case EXPECT(assert_equal(hessianFactor->information(), hessianFactorRot->information(), 1e-8) ); Pose3 poseDrift2 = Pose3(Rot3::ypr(-M_PI/2, -M_PI/3, -M_PI/2), gtsam::Point3(10,-4,5)); Values tranValues; tranValues.insert(x1, poseDrift2.compose(pose1)); tranValues.insert(x2, poseDrift2.compose(pose2)); tranValues.insert(x3, poseDrift2.compose(pose3)); boost::shared_ptr hessianFactorRotTran = smartFactor->linearize(tranValues); // Hessian is invariant to rotations and translations in the nondegenerate case EXPECT(assert_equal(hessianFactor->information(), hessianFactorRotTran->information(), 1e-8) ); } /* ************************************************************************* */ int main() { TestResult tr; return TestRegistry::runAllTests(tr); } /* ************************************************************************* */