/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file SmartRangeExample_plaza1.cpp * @brief A 2D Range SLAM example * @date June 20, 2013 * @author FRank Dellaert */ // Both relative poses and recovered trajectory poses will be stored as Pose2 objects #include // Each variable in the system (poses and landmarks) must be identified with a unique key. // We can either use simple integer keys (1, 2, 3, ...) or symbols (X1, X2, L1). // Here we will use Symbols #include // We want to use iSAM2 to solve the range-SLAM problem incrementally #include // iSAM2 requires as input a set set of new factors to be added stored in a factor graph, // and initial guesses for any new variables used in the added factors #include #include // We will use a non-liear solver to batch-inituialize from the first 150 frames #include // In GTSAM, measurement functions are represented as 'factors'. Several common factors // have been provided with the library for solving robotics SLAM problems. #include #include #include // To find data files, we can use `findExampleDataFile`, declared here: #include // Standard headers, added last, so we know headers above work on their own #include #include using namespace std; using namespace gtsam; namespace NM = gtsam::noiseModel; // data available at http://www.frc.ri.cmu.edu/projects/emergencyresponse/RangeData/ // Datafile format (from http://www.frc.ri.cmu.edu/projects/emergencyresponse/RangeData/log.html) // load the odometry // DR: Odometry Input (delta distance traveled and delta heading change) // Time (sec) Delta Dist. Trav. (m) Delta Heading (rad) typedef pair TimedOdometry; list readOdometry() { list odometryList; string drFile = findExampleDataFile("Plaza1_DR.txt"); ifstream is(drFile); if (!is) throw runtime_error("Plaza1_DR.txt file not found"); while (is) { double t, distance_traveled, delta_heading; is >> t >> distance_traveled >> delta_heading; odometryList.push_back( TimedOdometry(t, Pose2(distance_traveled, 0, delta_heading))); } is.clear(); /* clears the end-of-file and error flags */ return odometryList; } // load the ranges from TD // Time (sec) Sender / Antenna ID Receiver Node ID Range (m) typedef boost::tuple RangeTriple; vector readTriples() { vector triples; string tdFile = findExampleDataFile("Plaza1_TD.txt"); ifstream is(tdFile); if (!is) throw runtime_error("Plaza1_TD.txt file not found"); while (is) { double t, sender, receiver, range; is >> t >> sender >> receiver >> range; triples.push_back(RangeTriple(t, receiver, range)); } is.clear(); /* clears the end-of-file and error flags */ return triples; } // main int main(int argc, char** argv) { // load Plaza1 data list odometry = readOdometry(); vector triples = readTriples(); size_t K = triples.size(); // parameters size_t start = 220, end=3000; size_t minK = 100; // first batch of smart factors size_t incK = 50; // minimum number of range measurements to process after bool robust = true; bool smart = true; // Set Noise parameters Vector priorSigmas = Vector3(1, 1, M_PI); Vector odoSigmas = Vector3(0.05, 0.01, 0.1); auto odoNoise = NM::Diagonal::Sigmas(odoSigmas); double sigmaR = 100; // range standard deviation const NM::Base::shared_ptr // all same type priorNoise = NM::Diagonal::Sigmas(priorSigmas), //prior gaussian = NM::Isotropic::Sigma(1, sigmaR), // non-robust tukey = NM::Robust::Create(NM::mEstimator::Tukey::Create(15), gaussian), //robust rangeNoise = robust ? tukey : gaussian; // Initialize iSAM ISAM2 isam; // Add prior on first pose Pose2 pose0 = Pose2(-34.2086489999201, 45.3007639991120, M_PI - 2.02108900000000); NonlinearFactorGraph newFactors; newFactors.addPrior(0, pose0, priorNoise); ofstream os2("rangeResultLM.txt"); ofstream os3("rangeResultSR.txt"); // initialize points (Gaussian) Values initial; if (!smart) { initial.insert(symbol('L', 1), Point2(-68.9265, 18.3778)); initial.insert(symbol('L', 6), Point2(-37.5805, 69.2278)); initial.insert(symbol('L', 0), Point2(-33.6205, 26.9678)); initial.insert(symbol('L', 5), Point2(1.7095, -5.8122)); } Values landmarkEstimates = initial; // copy landmarks initial.insert(0, pose0); // initialize smart range factors size_t ids[] = { 1, 6, 0, 5 }; typedef boost::shared_ptr SmartPtr; map smartFactors; if (smart) { for(size_t jj: ids) { smartFactors[jj] = SmartPtr(new SmartRangeFactor(sigmaR)); newFactors.push_back(smartFactors[jj]); } } // set some loop variables size_t i = 1; // step counter size_t k = 0; // range measurement counter Pose2 lastPose = pose0; size_t countK = 0, totalCount=0; // Loop over odometry gttic_(iSAM); for(const TimedOdometry& timedOdometry: odometry) { //--------------------------------- odometry loop ----------------------------------------- double t; Pose2 odometry; boost::tie(t, odometry) = timedOdometry; printf("step %d, time = %g\n",(int)i,t); // add odometry factor newFactors.push_back( BetweenFactor(i - 1, i, odometry, odoNoise)); // predict pose and add as initial estimate Pose2 predictedPose = lastPose.compose(odometry); lastPose = predictedPose; initial.insert(i, predictedPose); landmarkEstimates.insert(i, predictedPose); // Check if there are range factors to be added while (k < K && t >= boost::get<0>(triples[k])) { size_t j = boost::get<1>(triples[k]); double range = boost::get<2>(triples[k]); if (i > start) { if (smart && totalCount < minK) { try { smartFactors[j]->addRange(i, range); printf("adding range %g for %d",range,(int)j); } catch (const invalid_argument& e) { printf("warning: omitting duplicate range %g for %d",range,(int)j); } cout << endl; } else { RangeFactor factor(i, symbol('L', j), range, rangeNoise); // Throw out obvious outliers based on current landmark estimates Vector error = factor.unwhitenedError(landmarkEstimates); if (k <= 200 || std::abs(error[0]) < 5) newFactors.push_back(factor); } totalCount += 1; } k = k + 1; countK = countK + 1; } // Check whether to update iSAM 2 if (k >= minK && countK >= incK) { gttic_(update); isam.update(newFactors, initial); gttoc_(update); gttic_(calculateEstimate); Values result = isam.calculateEstimate(); gttoc_(calculateEstimate); lastPose = result.at(i); bool hasLandmarks = result.exists(symbol('L', ids[0])); if (hasLandmarks) { // update landmark estimates landmarkEstimates = Values(); for(size_t jj: ids) landmarkEstimates.insert(symbol('L', jj), result.at(symbol('L', jj))); } newFactors = NonlinearFactorGraph(); initial = Values(); if (smart && !hasLandmarks) { cout << "initialize from smart landmarks" << endl; for(size_t jj: ids) { Point2 landmark = smartFactors[jj]->triangulate(result); initial.insert(symbol('L', jj), landmark); landmarkEstimates.insert(symbol('L', jj), landmark); } } countK = 0; for(const Values::ConstFiltered::KeyValuePair& it: result.filter()) os2 << it.key << "\t" << it.value.x() << "\t" << it.value.y() << "\t1" << endl; if (smart) { for(size_t jj: ids) { Point2 landmark = smartFactors[jj]->triangulate(result); os3 << jj << "\t" << landmark.x() << "\t" << landmark.y() << "\t1" << endl; } } } i += 1; if (i>end) break; //--------------------------------- odometry loop ----------------------------------------- } // end for gttoc_(iSAM); // Print timings tictoc_print_(); // Write result to file Values result = isam.calculateEstimate(); ofstream os("rangeResult.txt"); for(const Values::ConstFiltered::KeyValuePair& it: result.filter()) os << it.key << "\t" << it.value.x() << "\t" << it.value.y() << "\t" << it.value.theta() << endl; exit(0); }