%close all %clc import gtsam.*; %% Read metadata and compute relative sensor pose transforms IMU_metadata = importdata('KittiEquivBiasedImu_metadata.txt'); IMU_metadata = cell2struct(num2cell(IMU_metadata.data), IMU_metadata.colheaders, 2); IMUinBody = Pose3.Expmap([IMU_metadata.BodyPtx; IMU_metadata.BodyPty; IMU_metadata.BodyPtz; IMU_metadata.BodyPrx; IMU_metadata.BodyPry; IMU_metadata.BodyPrz; ]); if ~IMUinBody.equals(Pose3, 1e-5) error 'Currently only support IMUinBody is identity, i.e. IMU and body frame are the same'; end VO_metadata = importdata('KittiRelativePose_metadata.txt'); VO_metadata = cell2struct(num2cell(VO_metadata.data), VO_metadata.colheaders, 2); VOinBody = Pose3.Expmap([VO_metadata.BodyPtx; VO_metadata.BodyPty; VO_metadata.BodyPtz; VO_metadata.BodyPrx; VO_metadata.BodyPry; VO_metadata.BodyPrz; ]); GPS_metadata = importdata('KittiGps_metadata.txt'); GPS_metadata = cell2struct(num2cell(GPS_metadata.data), GPS_metadata.colheaders, 2); GPSinBody = Pose3.Expmap([GPS_metadata.BodyPtx; GPS_metadata.BodyPty; GPS_metadata.BodyPtz; GPS_metadata.BodyPrx; GPS_metadata.BodyPry; GPS_metadata.BodyPrz; ]); VOinIMU = IMUinBody.inverse().compose(VOinBody); GPSinIMU = IMUinBody.inverse().compose(GPSinBody); %% Read data and change coordinate frame of GPS and VO measurements to IMU frame IMU_data = importdata('KittiEquivBiasedImu.txt'); IMU_data = cell2struct(num2cell(IMU_data.data), IMU_data.colheaders, 2); imum = cellfun(@(x) x', num2cell([ [IMU_data.accelX]' [IMU_data.accelY]' [IMU_data.accelZ]' [IMU_data.omegaX]' [IMU_data.omegaY]' [IMU_data.omegaZ]' ], 2), 'UniformOutput', false); [IMU_data.acc_omega] = deal(imum{:}); IMU_data = rmfield(IMU_data, { 'accelX' 'accelY' 'accelZ' 'omegaX' 'omegaY' 'omegaZ' }); clear imum VO_data = importdata('KittiRelativePose.txt'); VO_data = cell2struct(num2cell(VO_data.data), VO_data.colheaders, 2); % Merge relative pose fields and convert to Pose3 logposes = [ [VO_data.dtx]' [VO_data.dty]' [VO_data.dtz]' [VO_data.drx]' [VO_data.dry]' [VO_data.drz]' ]; logposes = num2cell(logposes, 2); relposes = arrayfun(@(x) {gtsam.Pose3.Expmap(x{:}')}, logposes); relposes = arrayfun(@(x) {VOinIMU.compose(x{:}).compose(VOinIMU.inverse())}, relposes); [VO_data.RelativePose] = deal(relposes{:}); VO_data = rmfield(VO_data, { 'dtx' 'dty' 'dtz' 'drx' 'dry' 'drz' }); clear logposes relposes GPS_data = importdata('KittiGps.txt'); GPS_data = cell2struct(num2cell(GPS_data.data), GPS_data.colheaders, 2); %% Set initial conditions for the estimated trajectory disp('TODO: we have GPS so this initialization is not right') currentPoseGlobal = Pose3; % initial pose is the reference frame (navigation frame) currentVelocityGlobal = [0;0;0]; % the vehicle is stationary at the beginning bias_acc = [0;0;0]; % we initialize accelerometer biases to zero bias_omega = [0;0;0]; % we initialize gyro biases to zero %% Solver object isamParams = ISAM2Params; isamParams.setRelinearizeSkip(1); isam = gtsam.ISAM2(isamParams); %% create nonlinear factor graph factors = NonlinearFactorGraph; values = Values; %% Create prior on initial pose, velocity, and biases sigma_init_x = 1.0; sigma_init_v = 1.0; sigma_init_b = 1.0; values.insert(symbol('x',0), currentPoseGlobal); values.insert(symbol('v',0), LieVector(currentVelocityGlobal) ); values.insert(symbol('b',0), imuBias.ConstantBias(bias_acc,bias_omega) ); disp('TODO: we have GPS so this initialization is not right') % Prior on initial pose factors.add(PriorFactorPose3(symbol('x',0), ... currentPoseGlobal, noiseModel.Isotropic.Sigma(6, sigma_init_x))); % Prior on initial velocity factors.add(PriorFactorLieVector(symbol('v',0), ... LieVector(currentVelocityGlobal), noiseModel.Isotropic.Sigma(3, sigma_init_v))); % Prior on initial bias factors.add(PriorFactorConstantBias(symbol('b',0), ... imuBias.ConstantBias(bias_acc,bias_omega), noiseModel.Isotropic.Sigma(6, sigma_init_b))); currentSummarizedMeasurement = []; % Measurement types: % 1: VO % 2: GPS % 3: IMU timestamps = sortrows( [ ... [VO_data.Time]' 1*ones(length([VO_data.Time]), 1); ... %[GPS_data.Time]' 2*ones(length([GPS_data.Time]), 1); ... %[IMU_data.Time]' 3*ones(length([IMU_data.Time]), 1); ... ], 1); % this are the time-stamps at which we want to initialize a new node in the graph %% Main loop: % (1) we read the measurements % (2) we create the corresponding factors in the graph % (3) we solve the graph to obtain and optimal estimate of robot trajectory % t_previous = 0;%LC % poseIndex = 0;%LC % currentPose = Pose3; %LC position= []; %LC for measurementIndex = 1:size(timestamps,1) measurementIndex % currentPose = currentPose.compose(VO_data(measurementIndex).RelativePose);%LC % % position(measurementIndex,:) = currentPose.translation.vector;%LC % At each non=IMU measurement we initialize a new node in the graph currentPoseKey = symbol('x',poseIndex); currentVelKey = symbol('v',poseIndex); currentBiasKey = symbol('b',poseIndex); t = timestamps(measurementIndex, 1); type = timestamps(measurementIndex, 2); % if type == 3 % % Integrate IMU % % if isempty(currentSummarizedMeasurement) % % Create initial empty summarized measurement % % we assume that each row of the IMU.txt file has the following structure: % % timestamp delta_t acc_x acc_y acc_z omega_x omega_y omega_z % currentBias = isam.calculateEstimate(currentBiasKey - 1); % currentSummarizedMeasurement = gtsam.ImuFactorPreintegratedMeasurements( ... % currentBias, IMU_metadata.AccelerometerSigma.^2 * eye(3), ... % IMU_metadata.GyroscopeSigma.^2 * eye(3), IMU_metadata.IntegrationSigma.^2 * eye(3)); % end % % % Accumulate preintegrated measurement % deltaT = IMU_data(index).dt; % accMeas = IMU_data(index).acc_omega(1:3); % omegaMeas = IMU_data(index).acc_omega(4:6); % currentSummarizedMeasurement.integrateMeasurement(accMeas, omegaMeas, deltaT); % % else % % Create IMU factor % factors.add(ImuFactor( ... % currentPoseKey-1, currentVelKey-1, ... % currentPoseKey, currentVelKey, ... % currentBiasKey-1, currentSummarizedMeasurement, g, cor_v, ... % currentSummarizedMeasurement.PreintMeasCov)); % % % Reset summarized measurement % currentSummarizedMeasurement = []; % % if type == 1 % % Create VO factor % elseif type == 2 % % Create GPS factor % end % % poseIndex = poseIndex + 1; % end % ======================================================================= %% add factor corresponding to GPS measurements (if available at the current time) % % ======================================================================= % if isempty( find(GPS_data(:,1) == t ) ) == 0 % it is a GPS measurement % if length( find(GPS_data(:,1)) ) > 1 % error('more GPS measurements at the same time stamp: it should be an error') % end % % index = find(GPS_data(:,1) == t ); % the row of the IMU_data matrix that we have to integrate % GPSmeas = GPS_data(index,2:4); % % noiseModelGPS = ???; % noiseModelGPS.Isotropic.Sigma(6, sigma_init_x)) % % % add factor % disp('TODO: is the GPS noise right?') % factors.add(PriorFactor???(currentPoseKey, GPSmeas, noiseModelGPS) ); % end % ======================================================================= % %% add factor corresponding to VO measurements (if available at the current time) % % ======================================================================= % if isempty( find([VO_data.Time] == t, 1) )== 0 % it is a GPS measurement % if length( find([VO_data.Time] == t) ) > 1 % error('more VO measurements at the same time stamp: it should be an error') % end % % index = find([VO_data.Time] == t, 1); % the row of the IMU_data matrix that we have to integrate % % VOpose = VO_data(index).RelativePose; % noiseModelVO = noiseModel.Diagonal.Sigmas([ IMU_metadata.RotationSigma * [1;1;1]; IMU_metadata.TranslationSigma * [1;1;1] ]); % % % add factor % disp('TODO: is the VO noise right?') % factors.add(BetweenFactorPose3(lastVOPoseKey, currentPoseKey, VOpose, noiseModelVO)); % % lastVOPoseKey = currentPoseKey; % end % % ======================================================================= % % disp('TODO: add values') % % values.insert(, initialPose); % % values.insert(symbol('v',lastIndex+1), initialVel); % % %% Update solver % % ======================================================================= % isam.update(factors, values); % factors = NonlinearFactorGraph; % values = Values; % % isam.calculateEstimate(currentPoseKey); % % M = isam.marginalCovariance(key_pose); % % ======================================================================= % % previousPoseKey = currentPoseKey; % previousVelKey = currentVelKey; % t_previous = t; end figure plot(position(:,1),position(:,2)) % figure(1) % hold on; % plot(positions(1,:), positions(2,:), '-b'); % plot3DTrajectory(isam.calculateEstimate, 'g-'); % axis equal; % legend('true trajectory', 'traj integrated in body', 'traj integrated in nav')