/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file testInference.cpp * @brief Unit tests for functionality declared in inference.h * @author Frank Dellaert */ #include #define GTSAM_MAGIC_KEY #include #include #include using namespace std; using namespace gtsam; /* ************************************************************************* */ // The tests below test the *generic* inference algorithms. Some of these have // specialized versions in the derived classes GaussianFactorGraph etc... /* ************************************************************************* */ /* ************************************************************************* */ TEST(GaussianFactorGraph, createSmoother) { using namespace example; GaussianFactorGraph fg2; Ordering ordering; boost::tie(fg2,ordering) = createSmoother(3); LONGS_EQUAL(5,fg2.size()); // eliminate vector x3var; x3var.push_back(ordering["x3"]); vector x1var; x1var.push_back(ordering["x1"]); GaussianBayesNet p_x3 = *GaussianSequentialSolver( *GaussianSequentialSolver(fg2).jointFactorGraph(x3var)).eliminate(); GaussianBayesNet p_x1 = *GaussianSequentialSolver( *GaussianSequentialSolver(fg2).jointFactorGraph(x1var)).eliminate(); CHECK(assert_equal(*p_x1.back(),*p_x3.front())); // should be the same because of symmetry } /* ************************************************************************* */ TEST( Inference, marginals ) { using namespace example; // create and marginalize a small Bayes net on "x" GaussianBayesNet cbn = createSmallGaussianBayesNet(); vector xvar; xvar.push_back(0); GaussianBayesNet actual = *GaussianSequentialSolver( *GaussianSequentialSolver(GaussianFactorGraph(cbn)).jointFactorGraph(xvar)).eliminate(); // expected is just scalar Gaussian on x GaussianBayesNet expected = scalarGaussian(0, 4, sqrt(2)); CHECK(assert_equal(expected,actual)); } /* ************************************************************************* */ TEST( Inference, marginals2) { using namespace gtsam::planarSLAM; Graph fg; SharedDiagonal poseModel(sharedSigma(3, 0.1)); SharedDiagonal pointModel(sharedSigma(3, 0.1)); fg.addPrior(PoseKey(0), Pose2(), poseModel); fg.addOdometry(PoseKey(0), PoseKey(1), Pose2(1.0,0.0,0.0), poseModel); fg.addOdometry(PoseKey(1), PoseKey(2), Pose2(1.0,0.0,0.0), poseModel); fg.addBearingRange(PoseKey(0), PointKey(0), Rot2(), 1.0, pointModel); fg.addBearingRange(PoseKey(1), PointKey(0), Rot2(), 1.0, pointModel); fg.addBearingRange(PoseKey(2), PointKey(0), Rot2(), 1.0, pointModel); Values init; init.insert(PoseKey(0), Pose2(0.0,0.0,0.0)); init.insert(PoseKey(1), Pose2(1.0,0.0,0.0)); init.insert(PoseKey(2), Pose2(2.0,0.0,0.0)); init.insert(PointKey(0), Point2(1.0,1.0)); Ordering ordering(*fg.orderingCOLAMD(init)); FactorGraph::shared_ptr gfg(fg.linearize(init, ordering)); GaussianMultifrontalSolver solver(*gfg); solver.marginalFactor(ordering[PointKey(0)]); } /* ************************************************************************* */ int main() { TestResult tr; return TestRegistry::runAllTests(tr);} /* ************************************************************************* */