%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % GTSAM Copyright 2010, Georgia Tech Research Corporation, % Atlanta, Georgia 30332-0415 % All Rights Reserved % Authors: Frank Dellaert, et al. (see THANKS for the full author list) % % See LICENSE for the license information % % @brief Simple robotics example using the pre-built planar SLAM domain % @author Alex Cunningham % @author Frank Dellaert % @author Chris Beall %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% import gtsam.* %% Assumptions % - All values are axis aligned % - Robot poses are facing along the X axis (horizontal, to the right in images) % - We have full odometry for measurements % - The robot is on a grid, moving 2 meters each step %% Create graph container and add factors to it graph = NonlinearFactorGraph; %% Add prior priorNoise = noiseModel.Diagonal.Sigmas([0.3; 0.3; 0.1]); graph.add(PriorFactorPose2(1, Pose2(0, 0, 0), priorNoise)); % add directly to graph %% Add odometry model = noiseModel.Diagonal.Sigmas([0.2; 0.2; 0.1]); graph.add(BetweenFactorPose2(1, 2, Pose2(2, 0, 0 ), model)); graph.add(BetweenFactorPose2(2, 3, Pose2(2, 0, pi/2), model)); graph.add(BetweenFactorPose2(3, 4, Pose2(2, 0, pi/2), model)); graph.add(BetweenFactorPose2(4, 5, Pose2(2, 0, pi/2), model)); %% Add pose constraint graph.add(BetweenFactorPose2(5, 2, Pose2(2, 0, pi/2), model)); % print graph.print(sprintf('\nFactor graph:\n')); %% Initialize to noisy points initialEstimate = Values; initialEstimate.insert(1, Pose2(0.5, 0.0, 0.2 )); initialEstimate.insert(2, Pose2(2.3, 0.1, -0.2 )); initialEstimate.insert(3, Pose2(4.1, 0.1, pi/2)); initialEstimate.insert(4, Pose2(4.0, 2.0, pi )); initialEstimate.insert(5, Pose2(2.1, 2.1, -pi/2)); initialEstimate.print(sprintf('\nInitial estimate:\n')); %% Optimize using Levenberg-Marquardt optimization with an ordering from colamd optimizer = LevenbergMarquardtOptimizer(graph, initialEstimate); result = optimizer.optimizeSafely(); result.print(sprintf('\nFinal result:\n')); %% Plot Covariance Ellipses cla; hold on plot([result.atPose2(5).x;result.atPose2(2).x],[result.atPose2(5).y;result.atPose2(2).y],'r-'); marginals = Marginals(graph, result); plot2DTrajectory(result, [], marginals); for i=1:5,marginals.marginalCovariance(i),end axis equal axis tight view(2)