/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file testGaussianFactorGraphB.cpp * @brief Unit tests for Linear Factor Graph * @author Christian Potthast **/ #include #include #include #include #include #include #include #include #include #include #include #include // for operator += #include // for operator += #include // for operator += using namespace boost::assign; #include namespace br { using namespace boost::range; using namespace boost::adaptors; } #include #include using namespace std; using namespace gtsam; using namespace example; double tol=1e-5; using symbol_shorthand::X; using symbol_shorthand::L; /* ************************************************************************* */ TEST( GaussianFactorGraph, equals ) { GaussianFactorGraph fg = createGaussianFactorGraph(); GaussianFactorGraph fg2 = createGaussianFactorGraph(); EXPECT(fg.equals(fg2)); } /* ************************************************************************* */ TEST( GaussianFactorGraph, error ) { GaussianFactorGraph fg = createGaussianFactorGraph(); VectorValues cfg = createZeroDelta(); // note the error is the same as in testNonlinearFactorGraph as a // zero delta config in the linear graph is equivalent to noisy in // non-linear, which is really linear under the hood double actual = fg.error(cfg); DOUBLES_EQUAL( 5.625, actual, 1e-9 ); } /* ************************************************************************* */ TEST( GaussianFactorGraph, eliminateOne_x1 ) { GaussianFactorGraph fg = createGaussianFactorGraph(); GaussianConditional::shared_ptr conditional; pair result = fg.eliminatePartialSequential(Ordering(list_of(X(1)))); conditional = result.first->front(); // create expected Conditional Gaussian Matrix I = 15*I_2x2, R11 = I, S12 = -0.111111*I, S13 = -0.444444*I; Vector d = Vector2(-0.133333, -0.0222222); GaussianConditional expected(X(1),15*d,R11,L(1),S12,X(2),S13); EXPECT(assert_equal(expected,*conditional,tol)); } #if 0 /* ************************************************************************* */ TEST( GaussianFactorGraph, eliminateOne_x2 ) { Ordering ordering; ordering += X(2),L(1),X(1); GaussianFactorGraph fg = createGaussianFactorGraph(ordering); GaussianConditional::shared_ptr actual = fg.eliminateOne(0, EliminateQR).first; // create expected Conditional Gaussian double sig = 0.0894427; Matrix I = I_2x2/sig, R11 = I, S12 = -0.2*I, S13 = -0.8*I; Vector d = Vector2(0.2, -0.14)/sig, sigma = ones(2); GaussianConditional expected(ordering[X(2)],d,R11,ordering[L(1)],S12,ordering[X(1)],S13,sigma); EXPECT(assert_equal(expected,*actual,tol)); } /* ************************************************************************* */ TEST( GaussianFactorGraph, eliminateOne_l1 ) { Ordering ordering; ordering += L(1),X(1),X(2); GaussianFactorGraph fg = createGaussianFactorGraph(ordering); GaussianConditional::shared_ptr actual = fg.eliminateOne(0, EliminateQR).first; // create expected Conditional Gaussian double sig = sqrt(2.0)/10.; Matrix I = I_2x2/sig, R11 = I, S12 = -0.5*I, S13 = -0.5*I; Vector d = Vector2(-0.1, 0.25)/sig, sigma = ones(2); GaussianConditional expected(ordering[L(1)],d,R11,ordering[X(1)],S12,ordering[X(2)],S13,sigma); EXPECT(assert_equal(expected,*actual,tol)); } /* ************************************************************************* */ TEST( GaussianFactorGraph, eliminateOne_x1_fast ) { Ordering ordering; ordering += X(1),L(1),X(2); GaussianFactorGraph fg = createGaussianFactorGraph(ordering); GaussianConditional::shared_ptr conditional; GaussianFactorGraph remaining; boost::tie(conditional,remaining) = fg.eliminateOne(ordering[X(1)], EliminateQR); // create expected Conditional Gaussian Matrix I = 15*I_2x2, R11 = I, S12 = -0.111111*I, S13 = -0.444444*I; Vector d = Vector2(-0.133333, -0.0222222), sigma = ones(2); GaussianConditional expected(ordering[X(1)],15*d,R11,ordering[L(1)],S12,ordering[X(2)],S13,sigma); // Create expected remaining new factor JacobianFactor expectedFactor(1, (Matrix(4,2) << 4.714045207910318, 0., 0., 4.714045207910318, 0., 0., 0., 0.).finished(), 2, (Matrix(4,2) << -2.357022603955159, 0., 0., -2.357022603955159, 7.071067811865475, 0., 0., 7.071067811865475).finished(), (Vector(4) << -0.707106781186547, 0.942809041582063, 0.707106781186547, -1.414213562373094).finished(), noiseModel::Unit::Create(4)); EXPECT(assert_equal(expected,*conditional,tol)); EXPECT(assert_equal((const GaussianFactor&)expectedFactor,*remaining.back(),tol)); } /* ************************************************************************* */ TEST( GaussianFactorGraph, eliminateOne_x2_fast ) { Ordering ordering; ordering += X(1),L(1),X(2); GaussianFactorGraph fg = createGaussianFactorGraph(ordering); GaussianConditional::shared_ptr actual = fg.eliminateOne(ordering[X(2)], EliminateQR).first; // create expected Conditional Gaussian double sig = 0.0894427; Matrix I = I_2x2/sig, R11 = I, S12 = -0.2*I, S13 = -0.8*I; Vector d = Vector2(0.2, -0.14)/sig, sigma = ones(2); GaussianConditional expected(ordering[X(2)],d,R11,ordering[X(1)],S13,ordering[L(1)],S12,sigma); EXPECT(assert_equal(expected,*actual,tol)); } /* ************************************************************************* */ TEST( GaussianFactorGraph, eliminateOne_l1_fast ) { Ordering ordering; ordering += X(1),L(1),X(2); GaussianFactorGraph fg = createGaussianFactorGraph(ordering); GaussianConditional::shared_ptr actual = fg.eliminateOne(ordering[L(1)], EliminateQR).first; // create expected Conditional Gaussian double sig = sqrt(2.0)/10.; Matrix I = I_2x2/sig, R11 = I, S12 = -0.5*I, S13 = -0.5*I; Vector d = Vector2(-0.1, 0.25)/sig, sigma = ones(2); GaussianConditional expected(ordering[L(1)],d,R11,ordering[X(1)],S12,ordering[X(2)],S13,sigma); EXPECT(assert_equal(expected,*actual,tol)); } /* ************************************************************************* */ TEST( GaussianFactorGraph, eliminateAll ) { // create expected Chordal bayes Net Matrix I = I_2x2; Ordering ordering; ordering += X(2),L(1),X(1); Vector d1 = Vector2(-0.1,-0.1); GaussianBayesNet expected = simpleGaussian(ordering[X(1)],d1,0.1); double sig1 = 0.149071; Vector d2 = Vector2(0.0, 0.2)/sig1, sigma2 = ones(2); push_front(expected,ordering[L(1)],d2, I/sig1,ordering[X(1)], (-1)*I/sig1,sigma2); double sig2 = 0.0894427; Vector d3 = Vector2(0.2, -0.14)/sig2, sigma3 = ones(2); push_front(expected,ordering[X(2)],d3, I/sig2,ordering[L(1)], (-0.2)*I/sig2, ordering[X(1)], (-0.8)*I/sig2, sigma3); // Check one ordering GaussianFactorGraph fg1 = createGaussianFactorGraph(ordering); GaussianBayesNet actual = *GaussianSequentialSolver(fg1).eliminate(); EXPECT(assert_equal(expected,actual,tol)); GaussianBayesNet actualQR = *GaussianSequentialSolver(fg1, true).eliminate(); EXPECT(assert_equal(expected,actualQR,tol)); } /* ************************************************************************* */ TEST( GaussianFactorGraph, copying ) { // Create a graph Ordering ordering; ordering += X(2),L(1),X(1); GaussianFactorGraph actual = createGaussianFactorGraph(ordering); // Copy the graph ! GaussianFactorGraph copy = actual; // now eliminate the copy GaussianBayesNet actual1 = *GaussianSequentialSolver(copy).eliminate(); // Create the same graph, but not by copying GaussianFactorGraph expected = createGaussianFactorGraph(ordering); // and check that original is still the same graph EXPECT(assert_equal(expected,actual)); } /* ************************************************************************* */ TEST( GaussianFactorGraph, CONSTRUCTOR_GaussianBayesNet ) { Ordering ord; ord += X(2),L(1),X(1); GaussianFactorGraph fg = createGaussianFactorGraph(ord); // render with a given ordering GaussianBayesNet CBN = *GaussianSequentialSolver(fg).eliminate(); // True GaussianFactorGraph GaussianFactorGraph fg2(CBN); GaussianBayesNet CBN2 = *GaussianSequentialSolver(fg2).eliminate(); EXPECT(assert_equal(CBN,CBN2)); } /* ************************************************************************* */ TEST( GaussianFactorGraph, getOrdering) { Ordering original; original += L(1),X(1),X(2); FactorGraph symbolic(createGaussianFactorGraph(original)); Permutation perm(*inference::PermutationCOLAMD(VariableIndex(symbolic))); Ordering actual = original; actual.permuteInPlace(perm); Ordering expected; expected += L(1),X(2),X(1); EXPECT(assert_equal(expected,actual)); } /* ************************************************************************* */ TEST( GaussianFactorGraph, optimize_Cholesky ) { // create an ordering Ordering ord; ord += X(2),L(1),X(1); // create a graph GaussianFactorGraph fg = createGaussianFactorGraph(ord); // optimize the graph VectorValues actual = *GaussianSequentialSolver(fg, false).optimize(); // verify VectorValues expected = createCorrectDelta(ord); EXPECT(assert_equal(expected,actual)); } /* ************************************************************************* */ TEST( GaussianFactorGraph, optimize_QR ) { // create an ordering Ordering ord; ord += X(2),L(1),X(1); // create a graph GaussianFactorGraph fg = createGaussianFactorGraph(ord); // optimize the graph VectorValues actual = *GaussianSequentialSolver(fg, true).optimize(); // verify VectorValues expected = createCorrectDelta(ord); EXPECT(assert_equal(expected,actual)); } /* ************************************************************************* */ TEST( GaussianFactorGraph, combine) { // create an ordering Ordering ord; ord += X(2),L(1),X(1); // create a test graph GaussianFactorGraph fg1 = createGaussianFactorGraph(ord); // create another factor graph GaussianFactorGraph fg2 = createGaussianFactorGraph(ord); // get sizes size_t size1 = fg1.size(); size_t size2 = fg2.size(); // combine them fg1.combine(fg2); EXPECT(size1+size2 == fg1.size()); } /* ************************************************************************* */ TEST( GaussianFactorGraph, combine2) { // create an ordering Ordering ord; ord += X(2),L(1),X(1); // create a test graph GaussianFactorGraph fg1 = createGaussianFactorGraph(ord); // create another factor graph GaussianFactorGraph fg2 = createGaussianFactorGraph(ord); // get sizes size_t size1 = fg1.size(); size_t size2 = fg2.size(); // combine them GaussianFactorGraph fg3 = GaussianFactorGraph::combine2(fg1, fg2); EXPECT(size1+size2 == fg3.size()); } /* ************************************************************************* */ // print a vector of ints if needed for debugging void print(vector v) { for (size_t k = 0; k < v.size(); k++) cout << v[k] << " "; cout << endl; } /* ************************************************************************* */ TEST(GaussianFactorGraph, createSmoother) { GaussianFactorGraph fg1 = createSmoother(2).first; LONGS_EQUAL(3,fg1.size()); GaussianFactorGraph fg2 = createSmoother(3).first; LONGS_EQUAL(5,fg2.size()); } /* ************************************************************************* */ double error(const VectorValues& x) { // create an ordering Ordering ord; ord += X(2),L(1),X(1); GaussianFactorGraph fg = createGaussianFactorGraph(ord); return fg.error(x); } /* ************************************************************************* */ TEST( GaussianFactorGraph, multiplication ) { // create an ordering Ordering ord; ord += X(2),L(1),X(1); GaussianFactorGraph A = createGaussianFactorGraph(ord); VectorValues x = createCorrectDelta(ord); Errors actual = A * x; Errors expected; expected += Vector2(-1.0,-1.0); expected += Vector2(2.0,-1.0); expected += Vector2(0.0, 1.0); expected += Vector2(-1.0, 1.5); EXPECT(assert_equal(expected,actual)); } /* ************************************************************************* */ // Extra test on elimination prompted by Michael's email to Frank 1/4/2010 TEST( GaussianFactorGraph, elimination ) { Ordering ord; ord += X(1), X(2); // Create Gaussian Factor Graph GaussianFactorGraph fg; Matrix Ap = I_2x2, An = I_2x2 * -1; Vector b = (Vector(1) << 0.0).finished(); SharedDiagonal sigma = noiseModel::Isotropic::Sigma(1,2.0); fg += ord[X(1)], An, ord[X(2)], Ap, b, sigma; fg += ord[X(1)], Ap, b, sigma; fg += ord[X(2)], Ap, b, sigma; // Eliminate GaussianBayesNet bayesNet = *GaussianSequentialSolver(fg).eliminate(); // Check sigma EXPECT_DOUBLES_EQUAL(1.0,bayesNet[ord[X(2)]]->get_sigmas()(0),1e-5); // Check matrix Matrix R;Vector d; boost::tie(R,d) = matrix(bayesNet); Matrix expected = (Matrix(2, 2) << 0.707107, -0.353553, 0.0, 0.612372).finished(); Matrix expected2 = (Matrix(2, 2) << 0.707107, -0.353553, 0.0, -0.612372).finished(); EXPECT(equal_with_abs_tol(expected, R, 1e-6) || equal_with_abs_tol(expected2, R, 1e-6)); } /* ************************************************************************* */ // Tests ported from ConstrainedGaussianFactorGraph /* ************************************************************************* */ TEST( GaussianFactorGraph, constrained_simple ) { // get a graph with a constraint in it GaussianFactorGraph fg = createSimpleConstraintGraph(); EXPECT(hasConstraints(fg)); // eliminate and solve VectorValues actual = *GaussianSequentialSolver(fg).optimize(); // verify VectorValues expected = createSimpleConstraintValues(); EXPECT(assert_equal(expected, actual)); } /* ************************************************************************* */ TEST( GaussianFactorGraph, constrained_single ) { // get a graph with a constraint in it GaussianFactorGraph fg = createSingleConstraintGraph(); EXPECT(hasConstraints(fg)); // eliminate and solve VectorValues actual = *GaussianSequentialSolver(fg).optimize(); // verify VectorValues expected = createSingleConstraintValues(); EXPECT(assert_equal(expected, actual)); } /* ************************************************************************* */ TEST( GaussianFactorGraph, constrained_multi1 ) { // get a graph with a constraint in it GaussianFactorGraph fg = createMultiConstraintGraph(); EXPECT(hasConstraints(fg)); // eliminate and solve VectorValues actual = *GaussianSequentialSolver(fg).optimize(); // verify VectorValues expected = createMultiConstraintValues(); EXPECT(assert_equal(expected, actual)); } /* ************************************************************************* */ static SharedDiagonal model = noiseModel::Isotropic::Sigma(2,1); /* ************************************************************************* */ TEST(GaussianFactorGraph, replace) { Ordering ord; ord += X(1),X(2),X(3),X(4),X(5),X(6); SharedDiagonal noise(noiseModel::Isotropic::Sigma(3, 1.0)); GaussianFactorGraph::sharedFactor f1(new JacobianFactor( ord[X(1)], I_3x3, ord[X(2)], I_3x3, Z_3x1, noise)); GaussianFactorGraph::sharedFactor f2(new JacobianFactor( ord[X(2)], I_3x3, ord[X(3)], I_3x3, Z_3x1, noise)); GaussianFactorGraph::sharedFactor f3(new JacobianFactor( ord[X(3)], I_3x3, ord[X(4)], I_3x3, Z_3x1, noise)); GaussianFactorGraph::sharedFactor f4(new JacobianFactor( ord[X(5)], I_3x3, ord[X(6)], I_3x3, Z_3x1, noise)); GaussianFactorGraph actual; actual.push_back(f1); actual.push_back(f2); actual.push_back(f3); actual.replace(0, f4); GaussianFactorGraph expected; expected.push_back(f4); expected.push_back(f2); expected.push_back(f3); EXPECT(assert_equal(expected, actual)); } /* ************************************************************************* */ TEST(GaussianFactorGraph, createSmoother2) { using namespace example; GaussianFactorGraph fg2; Ordering ordering; boost::tie(fg2,ordering) = createSmoother(3); LONGS_EQUAL(5,fg2.size()); // eliminate vector x3var; x3var.push_back(ordering[X(3)]); vector x1var; x1var.push_back(ordering[X(1)]); GaussianBayesNet p_x3 = *GaussianSequentialSolver( *GaussianSequentialSolver(fg2).jointFactorGraph(x3var)).eliminate(); GaussianBayesNet p_x1 = *GaussianSequentialSolver( *GaussianSequentialSolver(fg2).jointFactorGraph(x1var)).eliminate(); CHECK(assert_equal(*p_x1.back(),*p_x3.front())); // should be the same because of symmetry } #endif /* ************************************************************************* */ TEST(GaussianFactorGraph, hasConstraints) { FactorGraph fgc1 = createMultiConstraintGraph(); EXPECT(hasConstraints(fgc1)); FactorGraph fgc2 = createSimpleConstraintGraph() ; EXPECT(hasConstraints(fgc2)); GaussianFactorGraph fg = createGaussianFactorGraph(); EXPECT(!hasConstraints(fg)); } #include #include #include #include /* ************************************************************************* */ TEST( GaussianFactorGraph, conditional_sigma_failure) { // This system derives from a failure case in DDF in which a Bayes Tree // has non-unit sigmas for conditionals in the Bayes Tree, which // should never happen by construction // Reason for the failure: using Vector_() is dangerous as having a non-float gets set to zero, resulting in constraints gtsam::Key xC1 = 0, l32 = 1, l41 = 2; // noisemodels at nonlinear level gtsam::SharedNoiseModel priorModel = noiseModel::Diagonal::Sigmas((Vector(6) << 0.05, 0.05, 3.0, 0.2, 0.2, 0.2).finished()); gtsam::SharedNoiseModel measModel = noiseModel::Unit::Create(2); gtsam::SharedNoiseModel elevationModel = noiseModel::Isotropic::Sigma(1, 3.0); double fov = 60; // degrees int imgW = 640; // pixels int imgH = 480; // pixels gtsam::Cal3_S2::shared_ptr K(new gtsam::Cal3_S2(fov, imgW, imgH)); typedef GenericProjectionFactor ProjectionFactor; double relElevation = 6; Values initValues; initValues.insert(xC1, Pose3(Rot3( -1., 0.0, 1.2246468e-16, 0.0, 1., 0.0, -1.2246468e-16, 0.0, -1.), Point3(0.511832102, 8.42819594, 5.76841725))); initValues.insert(l32, Point3(0.364081507, 6.89766221, -0.231582751) ); initValues.insert(l41, Point3(1.61051523, 6.7373052, -0.231582751) ); NonlinearFactorGraph factors; factors += PriorFactor(xC1, Pose3(Rot3( -1., 0.0, 1.2246468e-16, 0.0, 1., 0.0, -1.2246468e-16, 0.0, -1), Point3(0.511832102, 8.42819594, 5.76841725)), priorModel); factors += ProjectionFactor(Point2(333.648615, 98.61535), measModel, xC1, l32, K); factors += ProjectionFactor(Point2(218.508, 83.8022039), measModel, xC1, l41, K); factors += RangeFactor(xC1, l32, relElevation, elevationModel); factors += RangeFactor(xC1, l41, relElevation, elevationModel); // Check that sigmas are correct (i.e., unit) GaussianFactorGraph lfg = *factors.linearize(initValues); GaussianBayesTree actBT = *lfg.eliminateMultifrontal(); // Check that all sigmas in an unconstrained bayes tree are set to one BOOST_FOREACH(const GaussianBayesTree::sharedClique& clique, actBT.nodes() | br::map_values) { GaussianConditional::shared_ptr conditional = clique->conditional(); //size_t dim = conditional->rows(); //EXPECT(assert_equal(gtsam::ones(dim), conditional->get_model()->sigmas(), tol)); EXPECT(!conditional->get_model()); } } /* ************************************************************************* */ int main() { TestResult tr; return TestRegistry::runAllTests(tr);} /* ************************************************************************* */