""" A script validating the ImuFactor inference. """ from __future__ import print_function import math import matplotlib.pyplot as plt import numpy as np from mpl_toolkits.mplot3d import Axes3D import gtsam from gtsam_utils import plotPose3 from PreintegrationExample import PreintegrationExample, POSES_FIG # shorthand symbols: BIAS_KEY = int(gtsam.Symbol('b', 0)) V = lambda j: int(gtsam.Symbol('v', j)) X = lambda i: int(gtsam.Symbol('x', i)) np.set_printoptions(precision=3, suppress=True) class ImuFactorExample(PreintegrationExample): def __init__(self): self.velocity = np.array([2, 0, 0]) self.priorNoise = gtsam.noiseModel.Isotropic.Sigma(6, 0.1) self.velNoise = gtsam.noiseModel.Isotropic.Sigma(3, 0.1) # Choose one of these twists to change scenario: zero_twist = (np.zeros(3), np.zeros(3)) forward_twist = (np.zeros(3), self.velocity) loop_twist = (np.array([0, -math.radians(30), 0]), self.velocity) sick_twist = (np.array([math.radians(30), -math.radians(30), 0]), self.velocity) accBias = np.array([-0.3, 0.1, 0.2]) gyroBias = np.array([0.1, 0.3, -0.1]) bias = gtsam.ConstantBias(accBias, gyroBias) dt = 1e-2 super(ImuFactorExample, self).__init__(sick_twist, bias, dt) def addPrior(self, i, graph): state = self.scenario.navState(i) graph.push_back(gtsam.PriorFactorPose3(X(i), state.pose(), self.priorNoise)) graph.push_back(gtsam.PriorFactorVector3(V(i), state.velocity(), self.velNoise)) def run(self): graph = gtsam.NonlinearFactorGraph() # initialize data structure for pre-integrated IMU measurements pim = gtsam.PreintegratedImuMeasurements(self.params, self.actualBias) H9 = gtsam.OptionalJacobian9(); T = 12 num_poses = T + 1 # assumes 1 factor per second initial = gtsam.Values() initial.insert(BIAS_KEY, self.actualBias) for i in range(num_poses): state_i = self.scenario.navState(float(i)) initial.insert(X(i), state_i.pose()) initial.insert(V(i), state_i.velocity()) # simulate the loop i = 0 # state index actual_state_i = self.scenario.navState(0) for k, t in enumerate(np.arange(0, T, self.dt)): # get measurements and add them to PIM measuredOmega = self.runner.measuredAngularVelocity(t) measuredAcc = self.runner.measuredSpecificForce(t) pim.integrateMeasurement(measuredAcc, measuredOmega, self.dt, H9, H9) # Plot IMU many times if k % 10 == 0: self.plotImu(t, measuredOmega, measuredAcc) # Plot every second if k % int(1 / self.dt) == 0: self.plotGroundTruthPose(t) # create IMU factor every second if (k + 1) % int(1 / self.dt) == 0: factor = gtsam.ImuFactor(X(i), V(i), X(i + 1), V(i + 1), BIAS_KEY, pim) graph.push_back(factor) if True: print(factor) H2 = gtsam.OptionalJacobian96(); print(pim.predict(actual_state_i, self.actualBias, H9, H2)) pim.resetIntegration() actual_state_i = self.scenario.navState(t + self.dt) i += 1 # add priors on beginning and end self.addPrior(0, graph) self.addPrior(num_poses - 1, graph) # optimize using Levenberg-Marquardt optimization params = gtsam.LevenbergMarquardtParams() params.setVerbosityLM("SUMMARY") optimizer = gtsam.LevenbergMarquardtOptimizer(graph, initial, params) result = optimizer.optimize() # Calculate and print marginal covariances marginals = gtsam.Marginals(graph, result) print("Covariance on bias:\n", marginals.marginalCovariance(BIAS_KEY)) for i in range(num_poses): print("Covariance on pose {}:\n{}\n".format(i, marginals.marginalCovariance(X(i)))) print("Covariance on vel {}:\n{}\n".format(i, marginals.marginalCovariance(V(i)))) # Plot resulting poses i = 0 while result.exists(X(i)): pose_i = result.atPose3(X(i)) plotPose3(POSES_FIG, pose_i, 0.1) i += 1 print(result.atConstantBias(BIAS_KEY)) plt.ioff() plt.show() if __name__ == '__main__': ImuFactorExample().run()