/** * @file testIMUSystem * @author Alex Cunningham */ #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; using namespace gtsam; const double tol=1e-5; static const Key x0 = 0, x1 = 1, x2 = 2, x3 = 3, x4 = 4; static const Vector g = delta(3, 2, -9.81); /* ************************************************************************* */ TEST(testIMUSystem, instantiations) { // just checking for compilation PoseRTV x1_v; gtsam::SharedNoiseModel model1 = gtsam::noiseModel::Unit::Create(1); gtsam::SharedNoiseModel model3 = gtsam::noiseModel::Unit::Create(3); gtsam::SharedNoiseModel model6 = gtsam::noiseModel::Unit::Create(6); gtsam::SharedNoiseModel model9 = gtsam::noiseModel::Unit::Create(9); Vector accel = ones(3), gyro = ones(3); IMUFactor imu(accel, gyro, 0.01, x1, x2, model6); FullIMUFactor full_imu(accel, gyro, 0.01, x1, x2, model9); NonlinearEquality poseHardPrior(x1, x1_v); BetweenFactor odom(x1, x2, x1_v, model9); RangeFactor range(x1, x2, 1.0, model1); VelocityConstraint constraint(x1, x2, 0.1, 10000); PriorFactor posePrior(x1, x1_v, model9); DHeightPrior heightPrior(x1, 0.1, model1); VelocityPrior velPrior(x1, ones(3), model3); } /* ************************************************************************* */ TEST( testIMUSystem, optimize_chain ) { // create a simple chain of poses to generate IMU measurements const double dt = 1.0; PoseRTV pose1, pose2(Point3(1.0, 1.0, 0.0), Rot3::Ypr(0.1, 0.0, 0.0), Velocity3(2.0, 2.0, 0.0)), pose3(Point3(2.0, 2.0, 0.0), Rot3::Ypr(0.2, 0.0, 0.0), Velocity3(0.0, 0.0, 0.0)), pose4(Point3(3.0, 3.0, 0.0), Rot3::Ypr(0.3, 0.0, 0.0), Velocity3(2.0, 2.0, 0.0)); // create measurements SharedDiagonal model = noiseModel::Unit::Create(6); Vector6 imu12 = pose1.imuPrediction(pose2, dt); Vector6 imu23 = pose2.imuPrediction(pose3, dt); Vector6 imu34 = pose3.imuPrediction(pose4, dt); // assemble simple graph with IMU measurements and velocity constraints NonlinearFactorGraph graph; graph += NonlinearEquality(x1, pose1); graph += IMUFactor(imu12, dt, x1, x2, model); graph += IMUFactor(imu23, dt, x2, x3, model); graph += IMUFactor(imu34, dt, x3, x4, model); graph += VelocityConstraint(x1, x2, dt); graph += VelocityConstraint(x2, x3, dt); graph += VelocityConstraint(x3, x4, dt); // ground truth values Values true_values; true_values.insert(x1, pose1); true_values.insert(x2, pose2); true_values.insert(x3, pose3); true_values.insert(x4, pose4); // verify zero error EXPECT_DOUBLES_EQUAL(0, graph.error(true_values), 1e-5); // initialize with zero values and optimize Values values; values.insert(x1, PoseRTV()); values.insert(x2, PoseRTV()); values.insert(x3, PoseRTV()); values.insert(x4, PoseRTV()); Values actual = LevenbergMarquardtOptimizer(graph, values).optimize(); EXPECT(assert_equal(true_values, actual, tol)); } /* ************************************************************************* */ TEST( testIMUSystem, optimize_chain_fullfactor ) { // create a simple chain of poses to generate IMU measurements const double dt = 1.0; PoseRTV pose1, pose2(Point3(1.0, 0.0, 0.0), Rot3::Ypr(0.0, 0.0, 0.0), Velocity3(1.0, 0.0, 0.0)), pose3(Point3(2.0, 0.0, 0.0), Rot3::Ypr(0.0, 0.0, 0.0), Velocity3(1.0, 0.0, 0.0)), pose4(Point3(3.0, 0.0, 0.0), Rot3::Ypr(0.0, 0.0, 0.0), Velocity3(1.0, 0.0, 0.0)); // create measurements SharedDiagonal model = noiseModel::Isotropic::Sigma(9, 1.0); Vector6 imu12 = pose1.imuPrediction(pose2, dt); Vector6 imu23 = pose2.imuPrediction(pose3, dt); Vector6 imu34 = pose3.imuPrediction(pose4, dt); // assemble simple graph with IMU measurements and velocity constraints NonlinearFactorGraph graph; graph += NonlinearEquality(x1, pose1); graph += FullIMUFactor(imu12, dt, x1, x2, model); graph += FullIMUFactor(imu23, dt, x2, x3, model); graph += FullIMUFactor(imu34, dt, x3, x4, model); // ground truth values Values true_values; true_values.insert(x1, pose1); true_values.insert(x2, pose2); true_values.insert(x3, pose3); true_values.insert(x4, pose4); // verify zero error EXPECT_DOUBLES_EQUAL(0, graph.error(true_values), 1e-5); // initialize with zero values and optimize Values values; values.insert(x1, PoseRTV()); values.insert(x2, PoseRTV()); values.insert(x3, PoseRTV()); values.insert(x4, PoseRTV()); cout << "Initial Error: " << graph.error(values) << endl; // Initial error is 0.5 - need better prediction model Values actual = LevenbergMarquardtOptimizer(graph, values).optimize(); // EXPECT(assert_equal(true_values, actual, tol)); // FAIL } /* ************************************************************************* */ TEST( testIMUSystem, linear_trajectory) { // create a linear trajectory of poses // and verify simple solution const double dt = 1.0; PoseRTV start; Vector accel = delta(3, 0, 0.5); // forward force Vector gyro = delta(3, 0, 0.1); // constant rotation SharedDiagonal model = noiseModel::Unit::Create(9); Values true_traj, init_traj; NonlinearFactorGraph graph; graph += NonlinearEquality(x0, start); true_traj.insert(x0, start); init_traj.insert(x0, start); size_t nrPoses = 10; PoseRTV cur_pose = start; for (size_t i=1; i(accel - g, gyro, dt, xA, xB, model); true_traj.insert(xB, cur_pose); init_traj.insert(xB, PoseRTV()); } // EXPECT_DOUBLES_EQUAL(0, graph.error(true_traj), 1e-5); // FAIL } /* ************************************************************************* */ int main() { TestResult tr; return TestRegistry::runAllTests(tr); } /* ************************************************************************* */