/** * @file testLinearContainerFactor.cpp * * @date Jul 6, 2012 * @author Alex Cunningham */ #include #include #include #include using namespace gtsam; const gtsam::noiseModel::Diagonal::shared_ptr diag_model2 = noiseModel::Diagonal::Sigmas(Vector_(2, 1.0, 1.0)); const double tol = 1e-5; gtsam::Key l1 = 101, l2 = 102, x1 = 1, x2 = 2; Point2 landmark1(5.0, 1.5), landmark2(7.0, 1.5); Pose2 poseA1(0.0, 0.0, 0.0), poseA2(2.0, 0.0, 0.0); /* ************************************************************************* */ TEST( testLinearContainerFactor, generic_jacobian_factor ) { Ordering initOrdering; initOrdering += x1, x2, l1, l2; JacobianFactor expLinFactor1( initOrdering[l1], Matrix_(2,2, 2.74222, -0.0067457, 0.0, 2.63624), initOrdering[l2], Matrix_(2,2, -0.0455167, -0.0443573, -0.0222154, -0.102489), Vector_(2, 0.0277052, -0.0533393), diag_model2); LinearContainerFactor actFactor1(expLinFactor1, initOrdering); Values values; values.insert(l1, landmark1); values.insert(l2, landmark2); values.insert(x1, poseA1); values.insert(x2, poseA2); // Check reconstruction from same ordering GaussianFactor::shared_ptr actLinearizationA = actFactor1.linearize(values, initOrdering); EXPECT(assert_equal(*expLinFactor1.clone(), *actLinearizationA, tol)); // Check reconstruction from new ordering Ordering newOrdering; newOrdering += x1, l1, x2, l2; GaussianFactor::shared_ptr actLinearizationB = actFactor1.linearize(values, newOrdering); JacobianFactor expLinFactor2( newOrdering[l1], Matrix_(2,2, 2.74222, -0.0067457, 0.0, 2.63624), newOrdering[l2], Matrix_(2,2, -0.0455167, -0.0443573, -0.0222154, -0.102489), Vector_(2, 0.0277052, -0.0533393), diag_model2); EXPECT(assert_equal(*expLinFactor2.clone(), *actLinearizationB, tol)); } /* ************************************************************************* */ TEST( testLinearContainerFactor, jacobian_factor_withlinpoints ) { Ordering ordering; ordering += x1, x2, l1, l2; JacobianFactor expLinFactor( ordering[l1], Matrix_(2,2, 2.74222, -0.0067457, 0.0, 2.63624), ordering[l2], Matrix_(2,2, -0.0455167, -0.0443573, -0.0222154, -0.102489), Vector_(2, 0.0277052, -0.0533393), diag_model2); Values values; values.insert(l1, landmark1); values.insert(l2, landmark2); values.insert(x1, poseA1); values.insert(x2, poseA2); LinearContainerFactor actFactor(expLinFactor, ordering, values); LinearContainerFactor actFactorNolin(expLinFactor, ordering); EXPECT(assert_equal(actFactor, actFactor, tol)); EXPECT(assert_inequal(actFactor, actFactorNolin, tol)); EXPECT(assert_inequal(actFactorNolin, actFactor, tol)); // Check contents Values expLinPoint; expLinPoint.insert(l1, landmark1); expLinPoint.insert(l2, landmark2); CHECK(actFactor.linearizationPoint()); EXPECT(assert_equal(expLinPoint, *actFactor.linearizationPoint())); // Check error evaluation VectorValues delta = values.zeroVectors(ordering); delta.at(ordering[l1]) = Vector_(2, 1.0, 2.0); delta.at(ordering[l2]) = Vector_(2, 3.0, 4.0); Values noisyValues = values.retract(delta, ordering); double expError = expLinFactor.error(delta); EXPECT_DOUBLES_EQUAL(expError, actFactor.error(noisyValues), tol); EXPECT_DOUBLES_EQUAL(expLinFactor.error(values.zeroVectors(ordering)), actFactor.error(values), tol); } /* ************************************************************************* */ TEST( testLinearContainerFactor, generic_hessian_factor ) { Matrix G11 = Matrix_(1,1, 1.0); Matrix G12 = Matrix_(1,2, 2.0, 4.0); Matrix G13 = Matrix_(1,3, 3.0, 6.0, 9.0); Matrix G22 = Matrix_(2,2, 3.0, 5.0, 0.0, 6.0); Matrix G23 = Matrix_(2,3, 4.0, 6.0, 8.0, 1.0, 2.0, 4.0); Matrix G33 = Matrix_(3,3, 1.0, 2.0, 3.0, 0.0, 5.0, 6.0, 0.0, 0.0, 9.0); Vector g1 = Vector_(1, -7.0); Vector g2 = Vector_(2, -8.0, -9.0); Vector g3 = Vector_(3, 1.0, 2.0, 3.0); double f = 10.0; Ordering initOrdering; initOrdering += x1, x2, l1, l2; HessianFactor initFactor(initOrdering[x1], initOrdering[x2], initOrdering[l1], G11, G12, G13, g1, G22, G23, g2, G33, g3, f); Values values; values.insert(l1, landmark1); values.insert(l2, landmark2); values.insert(x1, poseA1); values.insert(x2, poseA2); LinearContainerFactor actFactor(initFactor, initOrdering); GaussianFactor::shared_ptr actLinearization1 = actFactor.linearize(values, initOrdering); EXPECT(assert_equal(*initFactor.clone(), *actLinearization1, tol)); Ordering newOrdering; newOrdering += l1, x1, x2, l2; HessianFactor expLinFactor(newOrdering[x1], newOrdering[x2], newOrdering[l1], G11, G12, G13, g1, G22, G23, g2, G33, g3, f); GaussianFactor::shared_ptr actLinearization2 = actFactor.linearize(values, newOrdering); EXPECT(assert_equal(*expLinFactor.clone(), *actLinearization2, tol)); } /* ************************************************************************* */ int main() { TestResult tr; return TestRegistry::runAllTests(tr); } /* ************************************************************************* */