#include #include #include #include #include #include using namespace gtsam; // Make the typename short so it looks much cleaner typedef SmartProjectionPoseFactor SmartFactor; int main(int argc, char* argv[]) { Cal3_S2::shared_ptr K(new Cal3_S2(50.0, 50.0, 0.0, 50.0, 50.0)); noiseModel::Isotropic::shared_ptr measurement_noise = noiseModel::Isotropic::Sigma(2, 1.0); // one pixel in u and v noiseModel::Diagonal::shared_ptr noise = noiseModel::Diagonal::Sigmas( (Vector(6) << Vector3::Constant(0.3), Vector3::Constant(0.1)).finished()); noiseModel::Isotropic::shared_ptr large_noise = noiseModel::Isotropic::Sigma(6, 100); ISAM2Params parameters; parameters.relinearizeThreshold = 0.01; parameters.relinearizeSkip = 1; parameters.cacheLinearizedFactors = false; parameters.enableDetailedResults = true; parameters.print(); ISAM2 isam(parameters); // Create a factor graph NonlinearFactorGraph graph; Values initial_estimate; Point3 point(0.0, 0.0, 1.0); // Intentionally initialize the variables off from the ground truth Pose3 delta(Rot3::Rodrigues(0.0, 0.0, 0.0), Point3(0.05, -0.10, 0.20)); Pose3 pose1(Rot3(), Point3(0.0, 0.0, 0.0)); Pose3 pose2(Rot3(), Point3(0.0, 0.2, 0.0)); Pose3 pose3(Rot3(), Point3(0.0, 0.4, 0.0)); Pose3 pose4(Rot3(), Point3(0.0, 0.5, 0.0)); Pose3 pose5(Rot3(), Point3(0.0, 0.6, 0.0)); std::vector pose_list = { pose1, pose2, pose3, pose4, pose5 }; SmartFactor::shared_ptr smart_factor(new SmartFactor(measurement_noise, K)); graph.push_back(smart_factor); graph.emplace_shared>(0, pose_list[0], noise); initial_estimate.insert(0, pose_list[0].compose(delta)); smart_factor->add(PinholePose(pose_list[0], K).project(point), 0); for (int i = 1; i < 5; i++) { PinholePose camera(pose_list[i], K); Point2 measurement = camera.project(point); std::cout << "****************************************************" << std::endl; std::cout << "i = " << i << std::endl; std::cout << "Measurement " << i << " is " << measurement << std::endl; graph.emplace_shared>(i, pose_list[i], noise); //graph.emplace_shared>(i - 1, i, Pose3(), large_noise); initial_estimate.insert(i, pose_list[i].compose(delta)); smart_factor->add(measurement, i); ISAM2Result result = isam.update(graph, initial_estimate); graph.resize(0); initial_estimate.clear(); result.print(); const auto& var_map = (*(result.detail)).variableStatus; std::cout << "Detailed results:" << std::endl; for (int j = 0; j < 3; j++) { if (var_map.exists(j)) { std::cout << j << " is reeliminated: " << var_map.at(j).isReeliminated << std::endl; std::cout << j << " is relinearized above thresh: " << var_map.at(j).isAboveRelinThreshold << std::endl; std::cout << j << " is relinearized involved: " << var_map.at(j).isRelinearizeInvolved << std::endl; std::cout << j << " is relinearized: " << var_map.at(j).isRelinearized << std::endl; std::cout << j << " is observed: " << var_map.at(j).isObserved << std::endl; std::cout << j << " is new: " << var_map.at(j).isNew << std::endl; std::cout << j << " is in the root clique: " << var_map.at(j).inRootClique << std::endl; } else { std::cout << j << " does not exist in the detailed results map." << std::endl; } } Values current_estimate = isam.calculateEstimate(); current_estimate.print("Current estimate: "); boost::optional point_res = smart_factor->point(current_estimate); if (point_res) { std::cout << *point_res << std::endl; } else { std::cout << "Point is degenerate." << std::endl; } } return 0; }