""" A script validating the ImuFactor inference. """ from __future__ import print_function import math import matplotlib.pyplot as plt import numpy as np from mpl_toolkits.mplot3d import Axes3D import gtsam from gtsam_utils import plotPose3 from PreintegrationExample import PreintegrationExample, POSES_FIG # shorthand symbols: BIAS_KEY = int(gtsam.Symbol('b', 0)) V = lambda j: int(gtsam.Symbol('v', j)) X = lambda i: int(gtsam.Symbol('x', i)) class ImuFactorExample(PreintegrationExample): def __init__(self): self.velocity = np.array([2, 0, 0]) forward_twist = (np.zeros(3), self.velocity) loop_twist = (np.array([0, -math.radians(30), 0]), self.velocity) super(ImuFactorExample, self).__init__(loop_twist) def run(self): graph = gtsam.NonlinearFactorGraph() i = 0 # state index # initialize data structure for pre-integrated IMU measurements pim = gtsam.PreintegratedImuMeasurements(self.params, self.actualBias) # simulate the loop T = 3 state = self.scenario.navState(0) for k, t in enumerate(np.arange(0, T, self.dt)): # get measurements and add them to PIM measuredOmega = self.runner.measuredAngularVelocity(t) measuredAcc = self.runner.measuredSpecificForce(t) pim.integrateMeasurement(measuredAcc, measuredOmega, self.dt) # Plot every second if k % 100 == 0: self.plotImu(t, measuredOmega, measuredAcc) self.plotGroundTruthPose(t) # create factor every second if (k + 1) % 100 == 0: factor = gtsam.ImuFactor(X(i), V(i), X(i + 1), V(i + 1), BIAS_KEY, pim) graph.push_back(factor) H1 = gtsam.OptionalJacobian9() H2 = gtsam.OptionalJacobian96() print(pim) predicted = pim.predict(state, self.actualBias, H1, H2) pim.resetIntegration() state = self.scenario.navState(t + self.dt) print("predicted.{}\nstate.{}".format(predicted, state)) i += 1 # add priors on beginning and end num_poses = i + 1 priorNoise = gtsam.noiseModel.Isotropic.Sigma(6, 0.1) velNoise = gtsam.noiseModel.Isotropic.Sigma(3, 0.1) for i, pose in [(0, self.scenario.pose(0)), (num_poses - 1, self.scenario.pose(T))]: graph.push_back(gtsam.PriorFactorPose3(X(i), pose, priorNoise)) graph.push_back(gtsam.PriorFactorVector3(V(i), self.velocity, velNoise)) # graph.print("\Graph:\n") initial = gtsam.Values() initial.insert(BIAS_KEY, self.actualBias) for i in range(num_poses): initial.insert(X(i), self.scenario.pose(float(i))) initial.insert(V(i), self.velocity) # optimize using Levenberg-Marquardt optimization params = gtsam.LevenbergMarquardtParams() params.setVerbosityLM("SUMMARY") optimizer = gtsam.LevenbergMarquardtOptimizer(graph, initial, params) result = optimizer.optimize() # result.print("\Result:\n") # Plot cameras i = 0 while result.exists(X(i)): pose_i = result.pose3_at(X(i)) plotPose3(POSES_FIG, pose_i, 0.1) i += 1 plt.ioff() plt.show() if __name__ == '__main__': ImuFactorExample().run()