/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file EquivInertialNavFactor_GlobalVel.h * @author Vadim Indelman, Stephen Williams * @brief Equivalent inertial navigation factor (velocity in the global frame). * @date Sep. 26, 2012 **/ #pragma once #include #include #include #include // Using numerical derivative to calculate d(Pose3::Expmap)/dw #include #include #include #include namespace gtsam { /* * NOTES: * ===== * Concept: Based on [Lupton12tro] * - Pre-integrate IMU measurements using the static function PreIntegrateIMUObservations. * Pre-integrated quantities are expressed in the body system of t0 - the first time instant (in which pre-integration began). * All sensor-to-body transformations are performed here. * - If required, calculate inertial solution by calling the static functions: predictPose_inertial, predictVelocity_inertial. * - When the time is right, incorporate pre-integrated IMU data by creating an EquivInertialNavFactor_GlobalVel factor, which will * relate between navigation variables at the two time instances (t0 and current time). * * Other notes: * - The global frame (NED or ENU) is defined by the user by specifying the gravity vector in this frame. * - The IMU frame is implicitly defined by the user via the rotation matrix between global and imu frames. * - Camera and IMU frames are identical * - The user should specify a continuous equivalent noise covariance, which can be calculated using * the static function CalcEquivalentNoiseCov based on the IMU gyro and acc measurement noise covariance * matrices and the process\modeling covariance matrix. The IneritalNavFactor converts this into a * discrete form using the supplied delta_t between sub-sequential measurements. * - Earth-rate correction: * + Currently the user should supply R_ECEF_to_G, which is the rotation from ECEF to the global * frame (Local-Level system: ENU or NED, see above). * + R_ECEF_to_G can be calculated by approximated values of latitude and longitude of the system. * + Currently it is assumed that a relatively small distance is traveled w.r.t. to initial pose, since R_ECEF_to_G is constant. * Otherwise, R_ECEF_to_G should be updated each time using the current lat-lon. * * - Frame Notation: * Quantities are written as {Frame of Representation/Destination Frame}_{Quantity Type}_{Quatity Description/Origination Frame} * So, the rotational velocity of the sensor written in the body frame is: body_omega_sensor * And the transformation from the body frame to the world frame would be: world_P_body * This allows visual chaining. For example, converting the sensed angular velocity of the IMU * (angular velocity of the sensor in the sensor frame) into the world frame can be performed as: * world_R_body * body_R_sensor * sensor_omega_sensor = world_omega_sensor * * * - Common Quantity Types * P : pose/3d transformation * R : rotation * omega : angular velocity * t : translation * v : velocity * a : acceleration * * - Common Frames * sensor : the coordinate system attached to the sensor origin * body : the coordinate system attached to body/inertial frame. * Unless an optional frame transformation is provided, the * sensor frame and the body frame will be identical * world : the global/world coordinate frame. This is assumed to be * a tangent plane to the earth's surface somewhere near the * vehicle */ template class EquivInertialNavFactor_GlobalVel : public NoiseModelFactor5 { private: typedef EquivInertialNavFactor_GlobalVel This; typedef NoiseModelFactor5 Base; Vector delta_pos_in_t0_; Vector delta_vel_in_t0_; Vector3 delta_angles_; double dt12_; Vector world_g_; Vector world_rho_; Vector world_omega_earth_; Matrix Jacobian_wrt_t0_Overall_; boost::optional Bias_initial_; // Bias used when pre-integrating IMU measurements boost::optional body_P_sensor_; // The pose of the sensor in the body frame public: // shorthand for a smart pointer to a factor typedef typename boost::shared_ptr shared_ptr; /** default constructor - only use for serialization */ EquivInertialNavFactor_GlobalVel() {} /** Constructor */ EquivInertialNavFactor_GlobalVel(const Key& Pose1, const Key& Vel1, const Key& IMUBias1, const Key& Pose2, const Key& Vel2, const Vector& delta_pos_in_t0, const Vector& delta_vel_in_t0, const Vector3& delta_angles, double dt12, const Vector world_g, const Vector world_rho, const Vector& world_omega_earth, const noiseModel::Gaussian::shared_ptr& model_equivalent, const Matrix& Jacobian_wrt_t0_Overall, boost::optional Bias_initial = boost::none, boost::optional body_P_sensor = boost::none) : Base(model_equivalent, Pose1, Vel1, IMUBias1, Pose2, Vel2), delta_pos_in_t0_(delta_pos_in_t0), delta_vel_in_t0_(delta_vel_in_t0), delta_angles_(delta_angles), dt12_(dt12), world_g_(world_g), world_rho_(world_rho), world_omega_earth_(world_omega_earth), Jacobian_wrt_t0_Overall_(Jacobian_wrt_t0_Overall), Bias_initial_(Bias_initial), body_P_sensor_(body_P_sensor) { } ~EquivInertialNavFactor_GlobalVel() override {} /** implement functions needed for Testable */ /** print */ void print(const std::string& s = "EquivInertialNavFactor_GlobalVel", const KeyFormatter& keyFormatter = DefaultKeyFormatter) const override { std::cout << s << "(" << keyFormatter(this->key1()) << "," << keyFormatter(this->key2()) << "," << keyFormatter(this->key3()) << "," << keyFormatter(this->key4()) << "," << keyFormatter(this->key5()) << "\n"; std::cout << "delta_pos_in_t0: " << this->delta_pos_in_t0_.transpose() << std::endl; std::cout << "delta_vel_in_t0: " << this->delta_vel_in_t0_.transpose() << std::endl; std::cout << "delta_angles: " << this->delta_angles_ << std::endl; std::cout << "dt12: " << this->dt12_ << std::endl; std::cout << "gravity (in world frame): " << this->world_g_.transpose() << std::endl; std::cout << "craft rate (in world frame): " << this->world_rho_.transpose() << std::endl; std::cout << "earth's rotation (in world frame): " << this->world_omega_earth_.transpose() << std::endl; if(this->body_P_sensor_) this->body_P_sensor_->print(" sensor pose in body frame: "); this->noiseModel_->print(" noise model"); } /** equals */ bool equals(const NonlinearFactor& expected, double tol=1e-9) const override { const This *e = dynamic_cast (&expected); return e != nullptr && Base::equals(*e, tol) && (delta_pos_in_t0_ - e->delta_pos_in_t0_).norm() < tol && (delta_vel_in_t0_ - e->delta_vel_in_t0_).norm() < tol && (delta_angles_ - e->delta_angles_).norm() < tol && (dt12_ - e->dt12_) < tol && (world_g_ - e->world_g_).norm() < tol && (world_rho_ - e->world_rho_).norm() < tol && (world_omega_earth_ - e->world_omega_earth_).norm() < tol && ((!body_P_sensor_ && !e->body_P_sensor_) || (body_P_sensor_ && e->body_P_sensor_ && body_P_sensor_->equals(*e->body_P_sensor_))); } POSE predictPose(const POSE& Pose1, const VELOCITY& Vel1, const IMUBIAS& Bias1) const { // Correct delta_pos_in_t0_ using (Bias1 - Bias_t0) Vector delta_BiasAcc = Bias1.accelerometer(); Vector delta_BiasGyro = Bias1.gyroscope(); if (Bias_initial_){ delta_BiasAcc -= Bias_initial_->accelerometer(); delta_BiasGyro -= Bias_initial_->gyroscope(); } Matrix J_Pos_wrt_BiasAcc = Jacobian_wrt_t0_Overall_.block(4,9,3,3); Matrix J_Pos_wrt_BiasGyro = Jacobian_wrt_t0_Overall_.block(4,12,3,3); Matrix J_angles_wrt_BiasGyro = Jacobian_wrt_t0_Overall_.block(0,12,3,3); /* Position term */ Vector delta_pos_in_t0_corrected = delta_pos_in_t0_ + J_Pos_wrt_BiasAcc*delta_BiasAcc + J_Pos_wrt_BiasGyro*delta_BiasGyro; /* Rotation term */ Vector delta_angles_corrected = delta_angles_ + J_angles_wrt_BiasGyro*delta_BiasGyro; // Another alternative: // Vector delta_angles_corrected = Rot3::Logmap( Rot3::Expmap(delta_angles_)*Rot3::Expmap(J_angles_wrt_BiasGyro*delta_BiasGyro) ); return predictPose_inertial(Pose1, Vel1, delta_pos_in_t0_corrected, delta_angles_corrected, dt12_, world_g_, world_rho_, world_omega_earth_); } static inline POSE predictPose_inertial(const POSE& Pose1, const VELOCITY& Vel1, const Vector& delta_pos_in_t0, const Vector3& delta_angles, const double dt12, const Vector& world_g, const Vector& world_rho, const Vector& world_omega_earth){ const POSE& world_P1_body = Pose1; const VELOCITY& world_V1_body = Vel1; /* Position term */ Vector body_deltaPos_body = delta_pos_in_t0; Vector world_deltaPos_pls_body = world_P1_body.rotation().matrix() * body_deltaPos_body; Vector world_deltaPos_body = world_V1_body * dt12 + 0.5*world_g*dt12*dt12 + world_deltaPos_pls_body; // Incorporate earth-related terms. Note - these are assumed to be constant between t1 and t2. world_deltaPos_body -= 2*skewSymmetric(world_rho + world_omega_earth)*world_V1_body * dt12*dt12; /* TODO: the term dt12*dt12 in 0.5*world_g*dt12*dt12 is not entirely correct: * the gravity should be canceled from the accelerometer measurements, bust since position * is added with a delta velocity from a previous term, the actual delta time is more complicated. * Need to figure out this in the future - currently because of this issue we'll get some more error * in Z axis. */ /* Rotation term */ Vector body_deltaAngles_body = delta_angles; // Convert earth-related terms into the body frame Matrix body_R_world(world_P1_body.rotation().inverse().matrix()); Vector body_rho = body_R_world * world_rho; Vector body_omega_earth = body_R_world * world_omega_earth; // Incorporate earth-related terms. Note - these are assumed to be constant between t1 and t2. body_deltaAngles_body -= (body_rho + body_omega_earth)*dt12; return POSE(Pose1.rotation() * POSE::Rotation::Expmap(body_deltaAngles_body), Pose1.translation() + typename POSE::Translation(world_deltaPos_body)); } VELOCITY predictVelocity(const POSE& Pose1, const VELOCITY& Vel1, const IMUBIAS& Bias1) const { // Correct delta_vel_in_t0_ using (Bias1 - Bias_t0) Vector delta_BiasAcc = Bias1.accelerometer(); Vector delta_BiasGyro = Bias1.gyroscope(); if (Bias_initial_){ delta_BiasAcc -= Bias_initial_->accelerometer(); delta_BiasGyro -= Bias_initial_->gyroscope(); } Matrix J_Vel_wrt_BiasAcc = Jacobian_wrt_t0_Overall_.block(6,9,3,3); Matrix J_Vel_wrt_BiasGyro = Jacobian_wrt_t0_Overall_.block(6,12,3,3); Vector delta_vel_in_t0_corrected = delta_vel_in_t0_ + J_Vel_wrt_BiasAcc*delta_BiasAcc + J_Vel_wrt_BiasGyro*delta_BiasGyro; return predictVelocity_inertial(Pose1, Vel1, delta_vel_in_t0_corrected, dt12_, world_g_, world_rho_, world_omega_earth_); } static inline VELOCITY predictVelocity_inertial(const POSE& Pose1, const VELOCITY& Vel1, const Vector& delta_vel_in_t0, const double dt12, const Vector& world_g, const Vector& world_rho, const Vector& world_omega_earth) { const POSE& world_P1_body = Pose1; const VELOCITY& world_V1_body = Vel1; Vector body_deltaVel_body = delta_vel_in_t0; Vector world_deltaVel_body = world_P1_body.rotation().matrix() * body_deltaVel_body; VELOCITY VelDelta( world_deltaVel_body + world_g * dt12 ); // Incorporate earth-related terms. Note - these are assumed to be constant between t1 and t2. VelDelta -= 2*skewSymmetric(world_rho + world_omega_earth)*world_V1_body * dt12; // Predict return Vel1 + VelDelta; } void predict(const POSE& Pose1, const VELOCITY& Vel1, const IMUBIAS& Bias1, POSE& Pose2, VELOCITY& Vel2) const { Pose2 = predictPose(Pose1, Vel1, Bias1); Vel2 = predictVelocity(Pose1, Vel1, Bias1); } POSE evaluatePoseError(const POSE& Pose1, const VELOCITY& Vel1, const IMUBIAS& Bias1, const POSE& Pose2, const VELOCITY& Vel2) const { // Predict POSE Pose2Pred = predictPose(Pose1, Vel1, Bias1); // Luca: difference between Pose2 and Pose2Pred POSE DiffPose( Pose2.rotation().between(Pose2Pred.rotation()), Pose2Pred.translation() - Pose2.translation() ); // DiffPose = Pose2.between(Pose2Pred); return DiffPose; // Calculate error //return Pose2.between(Pose2Pred); } VELOCITY evaluateVelocityError(const POSE& Pose1, const VELOCITY& Vel1, const IMUBIAS& Bias1, const POSE& Pose2, const VELOCITY& Vel2) const { // Predict VELOCITY Vel2Pred = predictVelocity(Pose1, Vel1, Bias1); // Calculate error return Vel2Pred-Vel2; } Vector evaluateError(const POSE& Pose1, const VELOCITY& Vel1, const IMUBIAS& Bias1, const POSE& Pose2, const VELOCITY& Vel2, boost::optional H1 = boost::none, boost::optional H2 = boost::none, boost::optional H3 = boost::none, boost::optional H4 = boost::none, boost::optional H5 = boost::none) const override { using namespace boost::placeholders; // TODO: Write analytical derivative calculations // Jacobian w.r.t. Pose1 if (H1){ Matrix H1_Pose = numericalDerivative11(boost::bind(&EquivInertialNavFactor_GlobalVel::evaluatePoseError, this, _1, Vel1, Bias1, Pose2, Vel2), Pose1); Matrix H1_Vel = numericalDerivative11(boost::bind(&EquivInertialNavFactor_GlobalVel::evaluateVelocityError, this, _1, Vel1, Bias1, Pose2, Vel2), Pose1); *H1 = stack(2, &H1_Pose, &H1_Vel); } // Jacobian w.r.t. Vel1 if (H2){ if (Vel1.size()!=3) throw std::runtime_error("Frank's hack to make this compile will not work if size != 3"); Matrix H2_Pose = numericalDerivative11(boost::bind(&EquivInertialNavFactor_GlobalVel::evaluatePoseError, this, Pose1, _1, Bias1, Pose2, Vel2), Vel1); Matrix H2_Vel = numericalDerivative11(boost::bind(&EquivInertialNavFactor_GlobalVel::evaluateVelocityError, this, Pose1, _1, Bias1, Pose2, Vel2), Vel1); *H2 = stack(2, &H2_Pose, &H2_Vel); } // Jacobian w.r.t. IMUBias1 if (H3){ Matrix H3_Pose = numericalDerivative11(boost::bind(&EquivInertialNavFactor_GlobalVel::evaluatePoseError, this, Pose1, Vel1, _1, Pose2, Vel2), Bias1); Matrix H3_Vel = numericalDerivative11(boost::bind(&EquivInertialNavFactor_GlobalVel::evaluateVelocityError, this, Pose1, Vel1, _1, Pose2, Vel2), Bias1); *H3 = stack(2, &H3_Pose, &H3_Vel); } // Jacobian w.r.t. Pose2 if (H4){ Matrix H4_Pose = numericalDerivative11(boost::bind(&EquivInertialNavFactor_GlobalVel::evaluatePoseError, this, Pose1, Vel1, Bias1, _1, Vel2), Pose2); Matrix H4_Vel = numericalDerivative11(boost::bind(&EquivInertialNavFactor_GlobalVel::evaluateVelocityError, this, Pose1, Vel1, Bias1, _1, Vel2), Pose2); *H4 = stack(2, &H4_Pose, &H4_Vel); } // Jacobian w.r.t. Vel2 if (H5){ if (Vel2.size()!=3) throw std::runtime_error("Frank's hack to make this compile will not work if size != 3"); Matrix H5_Pose = numericalDerivative11(boost::bind(&EquivInertialNavFactor_GlobalVel::evaluatePoseError, this, Pose1, Vel1, Bias1, Pose2, _1), Vel2); Matrix H5_Vel = numericalDerivative11(boost::bind(&EquivInertialNavFactor_GlobalVel::evaluateVelocityError, this, Pose1, Vel1, Bias1, Pose2, _1), Vel2); *H5 = stack(2, &H5_Pose, &H5_Vel); } Vector ErrPoseVector(POSE::Logmap(evaluatePoseError(Pose1, Vel1, Bias1, Pose2, Vel2))); Vector ErrVelVector(evaluateVelocityError(Pose1, Vel1, Bias1, Pose2, Vel2)); return concatVectors(2, &ErrPoseVector, &ErrVelVector); } static inline POSE PredictPoseFromPreIntegration(const POSE& Pose1, const VELOCITY& Vel1, const IMUBIAS& Bias1, const Vector& delta_pos_in_t0, const Vector3& delta_angles, double dt12, const Vector world_g, const Vector world_rho, const Vector& world_omega_earth, const Matrix& Jacobian_wrt_t0_Overall, const boost::optional& Bias_initial = boost::none) { // Correct delta_pos_in_t0_ using (Bias1 - Bias_t0) Vector delta_BiasAcc = Bias1.accelerometer(); Vector delta_BiasGyro = Bias1.gyroscope(); if (Bias_initial){ delta_BiasAcc -= Bias_initial->accelerometer(); delta_BiasGyro -= Bias_initial->gyroscope(); } Matrix J_Pos_wrt_BiasAcc = Jacobian_wrt_t0_Overall.block(4,9,3,3); Matrix J_Pos_wrt_BiasGyro = Jacobian_wrt_t0_Overall.block(4,12,3,3); Matrix J_angles_wrt_BiasGyro = Jacobian_wrt_t0_Overall.block(0,12,3,3); /* Position term */ Vector delta_pos_in_t0_corrected = delta_pos_in_t0 + J_Pos_wrt_BiasAcc*delta_BiasAcc + J_Pos_wrt_BiasGyro*delta_BiasGyro; /* Rotation term */ Vector delta_angles_corrected = delta_angles + J_angles_wrt_BiasGyro*delta_BiasGyro; // Another alternative: // Vector delta_angles_corrected = Rot3::Logmap( Rot3::Expmap(delta_angles_)*Rot3::Expmap(J_angles_wrt_BiasGyro*delta_BiasGyro) ); return predictPose_inertial(Pose1, Vel1, delta_pos_in_t0_corrected, delta_angles_corrected, dt12, world_g, world_rho, world_omega_earth); } static inline VELOCITY PredictVelocityFromPreIntegration(const POSE& Pose1, const VELOCITY& Vel1, const IMUBIAS& Bias1, const Vector& delta_vel_in_t0, double dt12, const Vector world_g, const Vector world_rho, const Vector& world_omega_earth, const Matrix& Jacobian_wrt_t0_Overall, const boost::optional& Bias_initial = boost::none) { // Correct delta_vel_in_t0_ using (Bias1 - Bias_t0) Vector delta_BiasAcc = Bias1.accelerometer(); Vector delta_BiasGyro = Bias1.gyroscope(); if (Bias_initial){ delta_BiasAcc -= Bias_initial->accelerometer(); delta_BiasGyro -= Bias_initial->gyroscope(); } Matrix J_Vel_wrt_BiasAcc = Jacobian_wrt_t0_Overall.block(6,9,3,3); Matrix J_Vel_wrt_BiasGyro = Jacobian_wrt_t0_Overall.block(6,12,3,3); Vector delta_vel_in_t0_corrected = delta_vel_in_t0 + J_Vel_wrt_BiasAcc*delta_BiasAcc + J_Vel_wrt_BiasGyro*delta_BiasGyro; return predictVelocity_inertial(Pose1, Vel1, delta_vel_in_t0_corrected, dt12, world_g, world_rho, world_omega_earth); } static inline void PredictFromPreIntegration(const POSE& Pose1, const VELOCITY& Vel1, const IMUBIAS& Bias1, POSE& Pose2, VELOCITY& Vel2, const Vector& delta_pos_in_t0, const Vector& delta_vel_in_t0, const Vector3& delta_angles, double dt12, const Vector world_g, const Vector world_rho, const Vector& world_omega_earth, const Matrix& Jacobian_wrt_t0_Overall, const boost::optional& Bias_initial = boost::none) { Pose2 = PredictPoseFromPreIntegration(Pose1, Vel1, Bias1, delta_pos_in_t0, delta_angles, dt12, world_g, world_rho, world_omega_earth, Jacobian_wrt_t0_Overall, Bias_initial); Vel2 = PredictVelocityFromPreIntegration(Pose1, Vel1, Bias1, delta_vel_in_t0, dt12, world_g, world_rho, world_omega_earth, Jacobian_wrt_t0_Overall, Bias_initial); } static inline void PreIntegrateIMUObservations(const Vector& msr_acc_t, const Vector& msr_gyro_t, const double msr_dt, Vector& delta_pos_in_t0, Vector3& delta_angles, Vector& delta_vel_in_t0, double& delta_t, const noiseModel::Gaussian::shared_ptr& model_continuous_overall, Matrix& EquivCov_Overall, Matrix& Jacobian_wrt_t0_Overall, const IMUBIAS Bias_t0 = IMUBIAS(), boost::optional p_body_P_sensor = boost::none){ // Note: all delta terms refer to an IMU\sensor system at t0 // Note: Earth-related terms are not accounted here but are incorporated in predict functions. using namespace boost::placeholders; POSE body_P_sensor = POSE(); bool flag_use_body_P_sensor = false; if (p_body_P_sensor){ body_P_sensor = *p_body_P_sensor; flag_use_body_P_sensor = true; } delta_pos_in_t0 = PreIntegrateIMUObservations_delta_pos(msr_dt, delta_pos_in_t0, delta_vel_in_t0); delta_vel_in_t0 = PreIntegrateIMUObservations_delta_vel(msr_gyro_t, msr_acc_t, msr_dt, delta_angles, delta_vel_in_t0, flag_use_body_P_sensor, body_P_sensor, Bias_t0); delta_angles = PreIntegrateIMUObservations_delta_angles(msr_gyro_t, msr_dt, delta_angles, flag_use_body_P_sensor, body_P_sensor, Bias_t0); delta_t += msr_dt; // Update EquivCov_Overall Matrix Z_3x3 = Z_3x3; Matrix I_3x3 = I_3x3; Matrix H_pos_pos = numericalDerivative11(boost::bind(&PreIntegrateIMUObservations_delta_pos, msr_dt, _1, delta_vel_in_t0), delta_pos_in_t0); Matrix H_pos_vel = numericalDerivative11(boost::bind(&PreIntegrateIMUObservations_delta_pos, msr_dt, delta_pos_in_t0, _1), delta_vel_in_t0); Matrix H_pos_angles = Z_3x3; Matrix H_pos_bias = collect(2, &Z_3x3, &Z_3x3); Matrix H_vel_vel = numericalDerivative11(boost::bind(&PreIntegrateIMUObservations_delta_vel, msr_gyro_t, msr_acc_t, msr_dt, delta_angles, _1, flag_use_body_P_sensor, body_P_sensor, Bias_t0), delta_vel_in_t0); Matrix H_vel_angles = numericalDerivative11(boost::bind(&PreIntegrateIMUObservations_delta_vel, msr_gyro_t, msr_acc_t, msr_dt, _1, delta_vel_in_t0, flag_use_body_P_sensor, body_P_sensor, Bias_t0), delta_angles); Matrix H_vel_bias = numericalDerivative11(boost::bind(&PreIntegrateIMUObservations_delta_vel, msr_gyro_t, msr_acc_t, msr_dt, delta_angles, delta_vel_in_t0, flag_use_body_P_sensor, body_P_sensor, _1), Bias_t0); Matrix H_vel_pos = Z_3x3; Matrix H_angles_angles = numericalDerivative11(boost::bind(&PreIntegrateIMUObservations_delta_angles, msr_gyro_t, msr_dt, _1, flag_use_body_P_sensor, body_P_sensor, Bias_t0), delta_angles); Matrix H_angles_bias = numericalDerivative11(boost::bind(&PreIntegrateIMUObservations_delta_angles, msr_gyro_t, msr_dt, delta_angles, flag_use_body_P_sensor, body_P_sensor, _1), Bias_t0); Matrix H_angles_pos = Z_3x3; Matrix H_angles_vel = Z_3x3; Matrix F_angles = collect(4, &H_angles_angles, &H_angles_pos, &H_angles_vel, &H_angles_bias); Matrix F_pos = collect(4, &H_pos_angles, &H_pos_pos, &H_pos_vel, &H_pos_bias); Matrix F_vel = collect(4, &H_vel_angles, &H_vel_pos, &H_vel_vel, &H_vel_bias); Matrix F_bias_a = collect(5, &Z_3x3, &Z_3x3, &Z_3x3, &I_3x3, &Z_3x3); Matrix F_bias_g = collect(5, &Z_3x3, &Z_3x3, &Z_3x3, &Z_3x3, &I_3x3); Matrix F = stack(5, &F_angles, &F_pos, &F_vel, &F_bias_a, &F_bias_g); noiseModel::Gaussian::shared_ptr model_discrete_curr = calc_descrete_noise_model(model_continuous_overall, msr_dt ); Matrix Q_d = (model_discrete_curr->R().transpose() * model_discrete_curr->R()).inverse(); EquivCov_Overall = F * EquivCov_Overall * F.transpose() + Q_d; // Luca: force identity covariance matrix (for testing purposes) // EquivCov_Overall = Matrix::Identity(15,15); // Update Jacobian_wrt_t0_Overall Jacobian_wrt_t0_Overall = F * Jacobian_wrt_t0_Overall; } static inline Vector PreIntegrateIMUObservations_delta_pos(const double msr_dt, const Vector& delta_pos_in_t0, const Vector& delta_vel_in_t0){ // Note: all delta terms refer to an IMU\sensor system at t0 // Note: delta_vel_in_t0 is already in body frame, so no need to use the body_P_sensor transformation here. return delta_pos_in_t0 + delta_vel_in_t0 * msr_dt; } static inline Vector PreIntegrateIMUObservations_delta_vel(const Vector& msr_gyro_t, const Vector& msr_acc_t, const double msr_dt, const Vector3& delta_angles, const Vector& delta_vel_in_t0, const bool flag_use_body_P_sensor, const POSE& body_P_sensor, IMUBIAS Bias_t0 = IMUBIAS()){ // Note: all delta terms refer to an IMU\sensor system at t0 // Calculate the corrected measurements using the Bias object Vector AccCorrected = Bias_t0.correctAccelerometer(msr_acc_t); Vector body_t_a_body; if (flag_use_body_P_sensor){ Matrix body_R_sensor = body_P_sensor.rotation().matrix(); Vector GyroCorrected(Bias_t0.correctGyroscope(msr_gyro_t)); Vector body_omega_body = body_R_sensor * GyroCorrected; Matrix body_omega_body__cross = skewSymmetric(body_omega_body); body_t_a_body = body_R_sensor * AccCorrected - body_omega_body__cross * body_omega_body__cross * body_P_sensor.translation().vector(); } else{ body_t_a_body = AccCorrected; } Rot3 R_t_to_t0 = Rot3::Expmap(delta_angles); return delta_vel_in_t0 + R_t_to_t0.matrix() * body_t_a_body * msr_dt; } static inline Vector PreIntegrateIMUObservations_delta_angles(const Vector& msr_gyro_t, const double msr_dt, const Vector3& delta_angles, const bool flag_use_body_P_sensor, const POSE& body_P_sensor, IMUBIAS Bias_t0 = IMUBIAS()){ // Note: all delta terms refer to an IMU\sensor system at t0 // Calculate the corrected measurements using the Bias object Vector GyroCorrected = Bias_t0.correctGyroscope(msr_gyro_t); Vector body_t_omega_body; if (flag_use_body_P_sensor){ body_t_omega_body = body_P_sensor.rotation().matrix() * GyroCorrected; } else { body_t_omega_body = GyroCorrected; } Rot3 R_t_to_t0 = Rot3::Expmap(delta_angles); R_t_to_t0 = R_t_to_t0 * Rot3::Expmap( body_t_omega_body*msr_dt ); return Rot3::Logmap(R_t_to_t0); } static inline noiseModel::Gaussian::shared_ptr CalcEquivalentNoiseCov(const noiseModel::Gaussian::shared_ptr& gaussian_acc, const noiseModel::Gaussian::shared_ptr& gaussian_gyro, const noiseModel::Gaussian::shared_ptr& gaussian_process){ Matrix cov_acc = ( gaussian_acc->R().transpose() * gaussian_acc->R() ).inverse(); Matrix cov_gyro = ( gaussian_gyro->R().transpose() * gaussian_gyro->R() ).inverse(); Matrix cov_process = ( gaussian_process->R().transpose() * gaussian_process->R() ).inverse(); cov_process.block(0,0, 3,3) += cov_gyro; cov_process.block(6,6, 3,3) += cov_acc; return noiseModel::Gaussian::Covariance(cov_process); } static inline void CalcEquivalentNoiseCov_DifferentParts(const noiseModel::Gaussian::shared_ptr& gaussian_acc, const noiseModel::Gaussian::shared_ptr& gaussian_gyro, const noiseModel::Gaussian::shared_ptr& gaussian_process, Matrix& cov_acc, Matrix& cov_gyro, Matrix& cov_process_without_acc_gyro){ cov_acc = ( gaussian_acc->R().transpose() * gaussian_acc->R() ).inverse(); cov_gyro = ( gaussian_gyro->R().transpose() * gaussian_gyro->R() ).inverse(); cov_process_without_acc_gyro = ( gaussian_process->R().transpose() * gaussian_process->R() ).inverse(); } static inline void Calc_g_rho_omega_earth_NED(const Vector& Pos_NED, const Vector& Vel_NED, const Vector& LatLonHeight_IC, const Vector& Pos_NED_Initial, Vector& g_NED, Vector& rho_NED, Vector& omega_earth_NED) { Matrix ENU_to_NED = (Matrix(3, 3) << 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, -1.0).finished(); Matrix NED_to_ENU = (Matrix(3, 3) << 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, -1.0).finished(); // Convert incoming parameters to ENU Vector Pos_ENU = NED_to_ENU * Pos_NED; Vector Vel_ENU = NED_to_ENU * Vel_NED; Vector Pos_ENU_Initial = NED_to_ENU * Pos_NED_Initial; // Call ENU version Vector g_ENU; Vector rho_ENU; Vector omega_earth_ENU; Calc_g_rho_omega_earth_ENU(Pos_ENU, Vel_ENU, LatLonHeight_IC, Pos_ENU_Initial, g_ENU, rho_ENU, omega_earth_ENU); // Convert output to NED g_NED = ENU_to_NED * g_ENU; rho_NED = ENU_to_NED * rho_ENU; omega_earth_NED = ENU_to_NED * omega_earth_ENU; } static inline void Calc_g_rho_omega_earth_ENU(const Vector& Pos_ENU, const Vector& Vel_ENU, const Vector& LatLonHeight_IC, const Vector& Pos_ENU_Initial, Vector& g_ENU, Vector& rho_ENU, Vector& omega_earth_ENU){ double R0 = 6.378388e6; double e = 1/297; double Re( R0*( 1-e*(sin( LatLonHeight_IC(0) ))*(sin( LatLonHeight_IC(0) )) ) ); // Calculate current lat, lon Vector delta_Pos_ENU(Pos_ENU - Pos_ENU_Initial); double delta_lat(delta_Pos_ENU(1)/Re); double delta_lon(delta_Pos_ENU(0)/(Re*cos(LatLonHeight_IC(0)))); double lat_new(LatLonHeight_IC(0) + delta_lat); double lon_new(LatLonHeight_IC(1) + delta_lon); // Rotation of lon about z axis Rot3 C1(cos(lon_new), sin(lon_new), 0.0, -sin(lon_new), cos(lon_new), 0.0, 0.0, 0.0, 1.0); // Rotation of lat about y axis Rot3 C2(cos(lat_new), 0.0, sin(lat_new), 0.0, 1.0, 0.0, -sin(lat_new), 0.0, cos(lat_new)); Rot3 UEN_to_ENU(0, 1, 0, 0, 0, 1, 1, 0, 0); Rot3 R_ECEF_to_ENU( UEN_to_ENU * C2 * C1 ); Vector omega_earth_ECEF(Vector3(0.0, 0.0, 7.292115e-5)); omega_earth_ENU = R_ECEF_to_ENU.matrix() * omega_earth_ECEF; // Calculating g double height(LatLonHeight_IC(2)); double EQUA_RADIUS = 6378137.0; // equatorial radius of the earth; WGS-84 double ECCENTRICITY = 0.0818191908426; // eccentricity of the earth ellipsoid double e2( pow(ECCENTRICITY,2) ); double den( 1-e2*pow(sin(lat_new),2) ); double Rm( (EQUA_RADIUS*(1-e2))/( pow(den,(3/2)) ) ); double Rp( EQUA_RADIUS/( sqrt(den) ) ); double Ro( sqrt(Rp*Rm) ); // mean earth radius of curvature double g0( 9.780318*( 1 + 5.3024e-3 * pow(sin(lat_new),2) - 5.9e-6 * pow(sin(2*lat_new),2) ) ); double g_calc( g0/( pow(1 + height/Ro, 2) ) ); g_ENU = (Vector(3) << 0.0, 0.0, -g_calc).finished(); // Calculate rho double Ve( Vel_ENU(0) ); double Vn( Vel_ENU(1) ); double rho_E = -Vn/(Rm + height); double rho_N = Ve/(Rp + height); double rho_U = Ve*tan(lat_new)/(Rp + height); rho_ENU = (Vector(3) << rho_E, rho_N, rho_U).finished(); } static inline noiseModel::Gaussian::shared_ptr calc_descrete_noise_model(const noiseModel::Gaussian::shared_ptr& model, double delta_t){ /* Q_d (approx)= Q * delta_t */ /* In practice, square root of the information matrix is represented, so that: * R_d (approx)= R / sqrt(delta_t) * */ return noiseModel::Gaussian::SqrtInformation(model->R()/sqrt(delta_t)); } private: /** Serialization function */ friend class boost::serialization::access; template void serialize(ARCHIVE & ar, const unsigned int /*version*/) { ar & boost::serialization::make_nvp("NonlinearFactor2", boost::serialization::base_object(*this)); } }; // \class EquivInertialNavFactor_GlobalVel } /// namespace gtsam