/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file ImuFactor.cpp * @author Luca Carlone * @author Stephen Williams * @author Richard Roberts * @author Vadim Indelman * @author David Jensen * @author Frank Dellaert **/ #include /* External or standard includes */ #include namespace gtsam { using namespace std; //------------------------------------------------------------------------------ // Inner class PreintegratedMeasurements //------------------------------------------------------------------------------ void PreintegratedImuMeasurements::print(const string& s) const { PreintegrationBase::print(s); } //------------------------------------------------------------------------------ bool PreintegratedImuMeasurements::equals( const PreintegratedImuMeasurements& other, double tol) const { return PreintegrationBase::equals(other, tol) && equal_with_abs_tol(preintMeasCov_, other.preintMeasCov_, tol); } //------------------------------------------------------------------------------ void PreintegratedImuMeasurements::resetIntegration() { PreintegrationBase::resetIntegration(); preintMeasCov_.setZero(); } //------------------------------------------------------------------------------ // sugar for derivative blocks #define D_R_R(H) (H)->block<3,3>(0,0) #define D_R_t(H) (H)->block<3,3>(0,3) #define D_R_v(H) (H)->block<3,3>(0,6) #define D_t_R(H) (H)->block<3,3>(3,0) #define D_t_t(H) (H)->block<3,3>(3,3) #define D_t_v(H) (H)->block<3,3>(3,6) #define D_v_R(H) (H)->block<3,3>(6,0) #define D_v_t(H) (H)->block<3,3>(6,3) #define D_v_v(H) (H)->block<3,3>(6,6) //------------------------------------------------------------------------------ void PreintegratedImuMeasurements::integrateMeasurement( const Vector3& measuredAcc, const Vector3& measuredOmega, double deltaT, OptionalJacobian<9, 9> F_test, OptionalJacobian<9, 9> G_test) { const Matrix3 dRij = deltaRij_.matrix(); // store this, which is useful to compute G_test // Update preintegrated measurements (also get Jacobian) Matrix3 D_incrR_integratedOmega; // Right jacobian computed at theta_incr Matrix9 F; // overall Jacobian wrt preintegrated measurements (df/dx) updatePreintegratedMeasurements(measuredAcc, measuredOmega, deltaT, &D_incrR_integratedOmega, &F); // first order covariance propagation: // as in [2] we consider a first order propagation that can be seen as a prediction phase in EKF /* --------------------------------------------------------------------------------------------*/ // preintMeasCov = F * preintMeasCov * F.transpose() + G * (1/deltaT) * measurementCovariance * G' // NOTE 1: (1/deltaT) allows to pass from continuous time noise to discrete time noise // measurementCovariance_discrete = measurementCovariance_contTime * (1/deltaT) // NOTE 2: computation of G * (1/deltaT) * measurementCovariance * G.transpose() done block-wise, // as G and measurementCovariance are block-diagonal matrices preintMeasCov_ = F * preintMeasCov_ * F.transpose(); D_R_R(&preintMeasCov_) += D_incrR_integratedOmega * p().gyroscopeCovariance * D_incrR_integratedOmega.transpose() * deltaT; D_t_t(&preintMeasCov_) += p().integrationCovariance * deltaT; D_v_v(&preintMeasCov_) += dRij * p().accelerometerCovariance * dRij.transpose() * deltaT; Matrix3 F_pos_noiseacc; F_pos_noiseacc = 0.5 * dRij * deltaT * deltaT; D_t_t(&preintMeasCov_) += (1 / deltaT) * F_pos_noiseacc * p().accelerometerCovariance * F_pos_noiseacc.transpose(); Matrix3 temp = F_pos_noiseacc * p().accelerometerCovariance * dRij.transpose(); // has 1/deltaT D_t_v(&preintMeasCov_) += temp; D_v_t(&preintMeasCov_) += temp.transpose(); // F_test and G_test are given as output for testing purposes and are not needed by the factor if (F_test) { (*F_test) << F; } if (G_test) { // This in only for testing & documentation, while the actual computation is done block-wise // omegaNoise intNoise accNoise (*G_test) << D_incrR_integratedOmega * deltaT, Z_3x3, Z_3x3, // angle Z_3x3, I_3x3 * deltaT, F_pos_noiseacc, // pos Z_3x3, Z_3x3, dRij * deltaT; // vel } } //------------------------------------------------------------------------------ PreintegratedImuMeasurements::PreintegratedImuMeasurements( const imuBias::ConstantBias& biasHat, const Matrix3& measuredAccCovariance, const Matrix3& measuredOmegaCovariance, const Matrix3& integrationErrorCovariance, bool use2ndOrderIntegration) { if (!use2ndOrderIntegration) throw("PreintegratedImuMeasurements no longer supports first-order integration: it incorrectly compensated for gravity"); biasHat_ = biasHat; boost::shared_ptr p = Params::MakeSharedD(); p->gyroscopeCovariance = measuredOmegaCovariance; p->accelerometerCovariance = measuredAccCovariance; p->integrationCovariance = integrationErrorCovariance; p_ = p; resetIntegration(); } //------------------------------------------------------------------------------ void PreintegratedImuMeasurements::integrateMeasurement( const Vector3& measuredAcc, const Vector3& measuredOmega, double deltaT, const Pose3& body_P_sensor) { p_->body_P_sensor = body_P_sensor; integrateMeasurement(measuredAcc, measuredOmega, deltaT); } //------------------------------------------------------------------------------ // ImuFactor methods //------------------------------------------------------------------------------ ImuFactor::ImuFactor(Key pose_i, Key vel_i, Key pose_j, Key vel_j, Key bias, const PreintegratedImuMeasurements& pim) : Base(noiseModel::Gaussian::Covariance(pim.preintMeasCov_), pose_i, vel_i, pose_j, vel_j, bias), _PIM_(pim) { } //------------------------------------------------------------------------------ gtsam::NonlinearFactor::shared_ptr ImuFactor::clone() const { return boost::static_pointer_cast( gtsam::NonlinearFactor::shared_ptr(new This(*this))); } //------------------------------------------------------------------------------ void ImuFactor::print(const string& s, const KeyFormatter& keyFormatter) const { cout << s << "ImuFactor(" << keyFormatter(this->key1()) << "," << keyFormatter(this->key2()) << "," << keyFormatter(this->key3()) << "," << keyFormatter(this->key4()) << "," << keyFormatter(this->key5()) << ")\n"; Base::print(""); _PIM_.print(" preintegrated measurements:"); // Print standard deviations on covariance only cout << " noise model sigmas: " << this->noiseModel_->sigmas().transpose() << endl; } //------------------------------------------------------------------------------ bool ImuFactor::equals(const NonlinearFactor& other, double tol) const { const This *e = dynamic_cast(&other); return e != NULL && Base::equals(*e, tol) && _PIM_.equals(e->_PIM_, tol) && Base::equals(*e, tol); } //------------------------------------------------------------------------------ Vector ImuFactor::evaluateError(const Pose3& pose_i, const Vector3& vel_i, const Pose3& pose_j, const Vector3& vel_j, const imuBias::ConstantBias& bias_i, boost::optional H1, boost::optional H2, boost::optional H3, boost::optional H4, boost::optional H5) const { return _PIM_.computeErrorAndJacobians(pose_i, vel_i, pose_j, vel_j, bias_i, H1, H2, H3, H4, H5); } //------------------------------------------------------------------------------ ImuFactor::ImuFactor(Key pose_i, Key vel_i, Key pose_j, Key vel_j, Key bias, const PreintegratedMeasurements& pim, const Vector3& n_gravity, const Vector3& omegaCoriolis, const boost::optional& body_P_sensor, const bool use2ndOrderCoriolis) : Base(noiseModel::Gaussian::Covariance(pim.preintMeasCov_), pose_i, vel_i, pose_j, vel_j, bias), _PIM_(pim) { boost::shared_ptr p = boost::make_shared< PreintegratedMeasurements::Params>(pim.p()); p->n_gravity = n_gravity; p->omegaCoriolis = omegaCoriolis; p->body_P_sensor = body_P_sensor; p->use2ndOrderCoriolis = use2ndOrderCoriolis; _PIM_.p_ = p; } //------------------------------------------------------------------------------ void ImuFactor::Predict(const Pose3& pose_i, const Vector3& vel_i, Pose3& pose_j, Vector3& vel_j, const imuBias::ConstantBias& bias_i, PreintegratedMeasurements& pim, const Vector3& n_gravity, const Vector3& omegaCoriolis, const bool use2ndOrderCoriolis) { // use deprecated predict PoseVelocityBias pvb = pim.predict(pose_i, vel_i, bias_i, n_gravity, omegaCoriolis, use2ndOrderCoriolis); pose_j = pvb.pose; vel_j = pvb.velocity; } } // namespace gtsam