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Part I

Theory
1 Optimization
We will be concerned with minimizing a non-linear least squares objective of the form

x∗ = argmin
x

∥h(x)− z∥2
Σ (1.1)

where x ∈ M is a point on an n-dimensional manifold (which could be Rn, an n-dimensional
Lie group G, or a general manifold M ), z ∈ Rm is an observed measurement, h : M → Rm is

a measurement function that predicts z from x, and ∥e∥2
Σ

∆= eT Σ−1e is the squared Mahalanobis
distance with covariance Σ.

To minimize (1.1) we need a notion of how the non-linear measurement function h(x) behaves
in the neighborhood of a linearization point a. Loosely speaking, we would like to define an m×n
Jacobian matrix Ha such that

h(a⊕ξ ) ≈ h(a)+Haξ (1.2)

with ξ ∈ Rn, and the operation ⊕ “increments” a ∈ M . Below we more formally develop this
notion, first for functions from Rn → Rm, then for Lie groups, and finally for manifolds.

Once equipped with the approximation (1.2), we can minimize the objective function (1.1) with
respect to δx instead:

ξ ∗ = argmin
ξ

∥h(a)+Haξ − z∥2
Σ (1.3)

This can be done by setting the derivative of (1.3) to zero, yielding the normal equations,

HT
a Haξ = HT

a (z−h(a))

which can be solved using Cholesky factorization. Of course, we might have to iterate this multiple
times, and use a trust-region method to bound ξ when the approximation (1.2) is not good.
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2 Multivariate Differentiation

2.1 Derivatives
For a vector space Rn, the notion of an increment is just done by vector addition

a⊕ξ ∆= a+ξ

and for the approximation 1.2 we will use a Taylor expansion using multivariate differentiation.
However, loosely following [4], we use a perhaps unfamiliar way to define derivatives:

Definition 1. We define a function f : Rn → Rm to be differentiable at a if there exists a matrix
f ′(a) ∈ Rm×n such that

lim
δx→0

| f (a)+ f ′(a)ξ − f (a+ξ )|
|ξ |

= 0

where |e| ∆=
√

eT e is the usual norm. If f is differentiable, then the matrix f ′(a) is called the
Jacobian matrix of f at a, and the linear map D fa : ξ 7→ f ′(a)ξ is called the derivative of f at a.

When no confusion is likely, we use the notation Fa
∆= f ′(a) to stress that f ′(a) is a matrix.

The benefit of using this definition is that it generalizes the notion of a scalar derivative f ′(a) :
R → R to multivariate functions from Rn → Rm. In particular, the derivative D fa maps vector
increments ξ on a to increments f ′(a)ξ on f (a), such that this linear map locally approximates f :

f (a+ξ ) ≈ f (a)+ f ′(a)ξ

Example 1. The function π : (x,y,z) 7→ (x/z,y/z) projects a 3D point (x,y,z) to the image plane,
and has the Jacobian matrix

π ′(x,y,z) =
1
z

[
1 0 −x/z
0 1 −y/z

]

2.2 Properties of Derivatives
This notion of a multivariate derivative obeys the usual rules:

Theorem 1. (Chain rule) If f : Rn → Rp is differentiable at a and g : Rp → Rm is differentiable at
f (a), then the Jacobian matrix Ha of h = g◦ f at a is the m×n matrix product

Ha = G f (a)Fa

Proof. See [4]

Example 2. If we follow the projection π by a calibration step γ : (x,y) 7→ (u0 + f x,u0 + f y), with

γ ′(x,y) =
[

f 0
0 f

]
then the combined function γ ◦π has the Jacobian matrix

(γ ◦π)′(x,y) =
f
z

[
1 0 −x/z
0 1 −y/z

]
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Theorem 2. (Inverse) If f : Rn → Rn is differentiable and has a differentiable inverse g ∆= f−1,
then its Jacobian matrix Ga at a is just the inverse of that of f , evaluated at g(a):

Ga =
[
Fg(a)

]−1

Proof. See [4]

Example 3. The function f : (x,y) 7→ (x2,xy) has the Jacobian matrix

F(x,y) =
[

2x 0
y x

]
and, for x ≥ 0, its inverse is the function g : (x,y) 7→ (x1/2,x−1/2y) with the Jacobian matrix

G(x,y) =
1
2

[
x−1/2 0

−x−3/2y 2x−1/2

]
It is easily verified that

g′(a,b) f ′(a1/2,a−1/2b) =
1
2

[
a−1/2 0

−a−3/2b 2a−1/2

][
2a1/2 0

a−1/2b a1/2

]
=

[
1 0
0 1

]
Problem 1. Verify the above for (a,b) = (4,6). Sketch the situation graphically to get insight.

2.3 Computing Multivariate Derivatives
Computing derivatives is made easy by defining the concept of a partial derivative:

Definition 2. For f : Rn → R, the partial derivative of f at a,

D j f (a) ∆= lim
h→0

f
(
a1, . . . ,a j +h, . . . ,an)− f

(
a1, . . . ,an)

h

which is the ordinary derivative of the scalar function g(x) ∆= f
(
a1, . . . ,x, . . . ,an).

Using this definition, one can show that the Jacobian matrix Fa of a differentiable multivariate
function f : Rn → Rm consists simply of the m×n partial derivatives D j f i(a), evaluated at a ∈ Rn:

Fa =

 D1 f 1(a) · · · Dn f 1(a)
... . . . ...

D1 f m(a) . . . Dn f m(a)


Problem 2. Verify the derivatives in Examples 1 to 3.
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3 Multivariate Functions on Lie Groups

3.1 Lie Groups
Lie groups are not as easy to treat as the vector space Rn but nevertheless have a lot of structure.
To generalize the concept of the total derivative above we just need to replace a⊕ξ in (1.3) with a
suitable operation in the Lie group G. In particular, the notion of an exponential map allows us to
define an incremental transformation as tracing out a geodesic curve on the group manifold along
a certain tangent vector ξ ,

a⊕ξ ∆= aexp
(

ξ̂
)

with ξ ∈ Rn for an n-dimensional Lie group, ξ̂ ∈ g the Lie algebra element corresponding to the
vector ξ , and exp ξ̂ the exponential map. Note that if G is equal to Rn then composing with the
exponential map aeξ̂ is just vector addition a+ξ .

Example 4. For the Lie group SO(3) of 3D rotations the vector ξ is denoted as ω and represents
an angular displacement. The Lie algebra element ξ̂ is a skew symmetric matrix denoted as [ω]× ∈
so(3), and is given by

[ω ]× =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0


Finally, the increment a⊕ξ = aeξ̂ corresponds to an incremental rotation R⊕ω = Re[ω ]× .

3.2 Derivatives
We can generalize Definition 1 to map exponential coordinates ξ to increments f ′(a)ξ on f (a),
such that the linear map D fa locally approximates a function f from G to Rm:

f (aeξ̂ ) ≈ f (a)+ f ′(a)ξ

Definition 3. We define a function f : G →Rm to be differentiable at a ∈ G if there exists a matrix
f ′(a) ∈ Rm×n such that

lim
ξ→0

∣∣∣ f (a)+ f ′(a)ξ − f (aeξ̂ )
∣∣∣

|ξ |
= 0

If f is differentiable, then the matrix f ′(a) is called the Jacobian matrix of f at a, and the linear
map D fa : ξ 7→ f ′(a)ξ is called the derivative of f at a.

Note that the vectors ξ can be viewed as lying in the tangent space to G at a, but defining this
rigorously would take us on a longer tour of differential geometry. Informally, ξ is simply the
direction, in a local coordinate frame, that is locally tangent at a to a geodesic curve γ : t 7→ aet̂ξ

traced out by the exponential map, with γ(0) = a.
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3.3 Derivative of an Action
The (usual) action of an n-dimensional matrix group G is matrix-vector multiplication on Rn, i.e.,
f : G×Rn → Rn with

f (T, p) = T p

Since this is a function defined on the product G×Rn the derivative is a linear transformation
D f : R2n → Rn with

D f(T,p) (ξ ,δ p) = D1 f(T,p) (ξ )+D2 f(T,p) (δ p)

Theorem 3. The Jacobian matrix of the group action f (T,P) = T p at (T, p) is given by

F(T,p) =
[

T H(p) T
]
= T

[
H(p) In

]
with H : Rn → Rn×n a linear mapping that depends on p, and In the n×n identity matrix.

Proof. First, the derivative D2 f with respect to in p is easy, as its matrix is simply T:

f (T, p+δ p) = T (p+δ p) = T p+T δ p = f (T, p)+D2 f (δ p)

For the derivative D1 f with respect to a change in the first argument T , we want

f (Teξ̂ , p) = Teξ̂ p ≈ T p+D1 f (ξ )

Since the matrix exponential is given by the series eA = I +A+ A2

2! + A3

3! + . . . we have, to first order

Teξ̂ p ≈ T (I + ξ̂ )p = T p+T ξ̂ p

Hence, we need to show that
ξ̂ p = H(p)ξ (3.1)

with H(p) an n× n matrix that depends on p. Expressing the map ξ → ξ̂ in terms of the Lie
algebra generators Gi, using tensors and Einstein summation, we have ξ̂ i

j = Gi
jkξ k allowing us to

calculate ξ̂ p as (
ξ̂ p

)i
= ξ̂ i

j p
j = Gi

jkξ k p j =
(

Gi
jk p j

)
ξ k = H i

k(p)ξ k

Example 5. For 3D rotations R ∈ SO(3), we have ω̂ = [ω ]× and

Gk=1 :

 0 0 0
0 0 −1
0 1 0

Gk=2 :

 0 0 1
0 0 0
−1 0 0

 Gk=3 :

 0 −1 0
1 0 0
0 0 0


The matrices

(
Gi

k

)
j are obtained by assembling the jth columns of the generators above, yielding

H(p) equal to: 0 0 0
0 0 1
0 −1 0

 p1 +

 0 0 −1
0 0 0
1 0 0

 p2 +

 0 1 0
−1 0 0
0 0 0

 p3 =

 0 p3 −p2

−p3 0 p1

p2 −p1 0

 = [−p]×

Hence, the Jacobian matrix of f (R, p) = Rp is given by

F(R,p) = R
(

[−p]× I3
)
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3.4 Derivative of an Inverse Action
Applying the action by the inverse of T ∈ G yields a function g : G×Rn → Rn defined by

g(T, p) = T−1 p

Theorem 4. The Jacobian matrix of the inverse group action g(T, p) = T−1 p is given by

G(T,p) =
[
−H(T−1 p) T−1 ]

where H : Rn → Rn×n is the same mapping as before.

Proof. Again, the derivative D2g with respect to in p is easy, the matrix of which is simply T−1:

g(T, p+δ p) = T−1(p+δ p) = T−1 p+T−1δ p = g(T, p)+D2g(δ p)

Conversely, a change in T yields

g(Teξ̂ , p) =
(

Teξ̂
)−1

p = e−ξ̂ T−1 p

Similar to before, if we expand the matrix exponential we get

e−A = I −A+
A2

2!
− A3

3!
+ . . .

so
e−ξ̂ T−1 p ≈ (I − ξ̂ )T−1 p = g(T, p)− ξ̂

(
T−1 p

)
Example 6. For 3D rotations R∈ SO(3) we have R−1 = RT , H(p) =−[p]×, and hence the Jacobian
matrix of g(R, p) = RT p is given by

G(R,p) =
(

[RT p]× RT )
4 Instantaneous Velocity
For matrix Lie groups, if we have a matrix T n

b (t) that depends on a parameter t, i.e., T n
b (t) follows

a curve on the manifold, then it would be of interest to find the velocity of a point qn(t) = T n
b (t)pb

acted upon by T n
b (t). We can express the velocity of q(t) in both the n-frame and b-frame:

q̇n = Ṫ n
b pb = Ṫ n

b (T n
b )−1 pn and q̇b = (T n

b )−1 q̇n = (T n
b )−1 Ṫ n

b pb

Both the matrices ξ̂ n
nb

∆= Ṫ n
b

(
T n

b

)−1 and ξ̂ b
nb

∆=
(
T n

b

)−1 Ṫ n
b are skew-symmetric Lie algebra elements

that describe the instantaneous velocity [3, page 51 for rotations, page 419 for SE(3)]. We will
revisit this for both rotations and rigid 3D transformations.
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5 Differentials: Smooth Mapping between Lie Groups

5.1 Motivation and Definition
The above shows how to compute the derivative of a function f : G → Rm. However, what if the
argument to f is itself the result of a mapping between Lie groups? In other words, f = g◦φ , with
g : G → Rm and where φ : H → G is a smooth mapping from the n-dimensional Lie group H to the
p-dimensional Lie group G. In this case, one would expect that we can arrive at D fa by composing
linear maps, as follows:

f ′(a) = (g◦φ)′(a) = Gφ(a)φ ′(a)

where φ ′(a) is an n× p matrix that is the best linear approximation to the map φ : H → G. The
corresponding linear map Dφa is called the differential or pushforward of the mapping φ at a.

Because a rigorous definition will lead us too far astray, here we only informally define the
pushforward of φ at a as the linear map Dφa : Rn → Rp such that Dφa (ξ ) ∆= φ ′(a)ξ and

φ
(

aeξ̂
)
≈ φ (a)exp

(
φ̂ ′(a)ξ

)
(5.1)

with equality for ξ → 0. We call φ ′(a) the Jacobian matrix of the map φ at a. Below we show
that even with this informal definition we can deduce the pushforward in a number of useful cases.

5.2 Left Multiplication with a Constant
Theorem 5. Suppose G is an n-dimensional Lie group, and φ : G → G is defined as φ(g) = hg,
with h ∈ G a constant. Then Dφa is the identity mapping and

φ ′(a) = In

Proof. Defining y = Dφax as in (5.1), we have

φ(a)eŷ = φ(aex̂)
haeŷ = haex̂

y = x

5.3 Pushforward of the Inverse Mapping

A well known property of Lie groups is the the fact that applying an incremental change ξ̂ in a
different frame g can be applied in a single step by applying the change Adgξ̂ in the original frame,

geξ̂ g−1 = exp
(

Adgξ̂
)

(5.2)

where Adg : g → g is the adjoint representation. This comes in handy in the following:
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Theorem 6. Suppose that φ : G → G is defined as the mapping from an element g to its inverse
g−1, i.e., φ(g) = g−1, then the pushforward Dφa satisfies

(Dφax)ˆ= −Adax̂ (5.3)

In other words, and this is intuitive in hindsight, approximating the inverse is accomplished by
negation of ξ̂ , along with an adjoint to make sure it is applied in the right frame. Note, however,
that (5.3) does not immediately yield a useful expression for the Jacobian matrix φ ′(a), but in
many important cases this will turn out to be easy.

Proof. Defining y = Dφax as in (5.1), we have

φ(a)eŷ = φ(aex̂)

a−1eŷ =
(
aex̂)−1

eŷ = −aex̂a−1

ŷ = −Adax̂

Example 7. For 3D rotations R ∈ SO(3) we have

Adg(ω̂) = Rω̂RT = [Rω ]×

and hence the pushforward for the inverse mapping φ(R) = RT has the matrix φ ′(R) = −R.

5.4 Right Multiplication with a Constant
Theorem 7. Suppose φ : G→G is defined as φ(g) = gh, with h∈G a constant. Then Dφa satisfies

(Dφax)ˆ= Adh−1 x̂

Proof. Defining y = Dφax as in (5.1), we have

φ(a)eŷ = φ(aex̂)

ahe = aex̂h

eŷ = h−1ex̂h = exp(Adh−1 x̂)
ŷ = Adh−1 x̂

Example 8. In the case of 3D rotations, right multiplication with a constant rotation R is done
through the mapping φ(A) = AR, and satisfies

[DφAx]× = AdRT [x]×

For 3D rotations R ∈ SO(3) we have

AdRT (ω̂) = RT ω̂R = [RT ω ]×

and hence the Jacobian matrix of φ at A is φ ′(A) = RT .
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5.5 Pushforward of Compose
Theorem 8. If we define the mapping φ : G×G→G as the product of two group elements g,h∈G,
i.e., φ(g,h) = gh, then the pushforward will satisfy

Dφ(a,b)(x,y) = D1φ(a,b)x+D2φ(a,b)y

with (
D1φ(a,b)x

)
ˆ= Adb−1 x̂ and D2φ(a,b)y = y

Proof. Looking at the first argument, the proof is very similar to right multiplication with a constant
b. Indeed, defining y = Dφax as in (5.1), we have

φ(a,b)eŷ = φ(aex̂,b)

abeŷ = aex̂b

eŷ = b−1ex̂b = exp(Adb−1 x̂)
ŷ = Adb−1 x̂ (5.4)

In other words, to apply an incremental change x̂ to a we first need to undo b, then apply x̂, and
then apply b again. Using (5.2) this can be done in one step by simply applying Adb−1 x̂.

The second argument is quite a bit easier and simply yields the identity mapping:

φ(a,b)eŷ = φ(a,bex̂)

abeŷ = abex̂

y = x (5.5)

Example 9. For 3D rotations A,B∈ SO(3) we have φ(A,B) = AB, and AdBT [ω]× = [BT ω ]×, hence
the Jacobian matrix φ ′(A,B) of composing two rotations is given by

φ ′(A,B) =
[

BT I3
]

5.6 Pushforward of Between
Finally, let us find the pushforward of between, defined as φ(g,h) = g−1h. For the first argument
we reason as:

φ(g,h)eŷ = φ(gex̂,h)

g−1heŷ =
(
gex̂)−1

h = −ex̂g−1h

eŷ = −
(
h−1g

)
ex̂ (

h−1g
)−1

= −expAd(h−1g)x̂

ŷ = −Ad(h−1g)x̂ = −Adφ(h,g)x̂ (5.6)

The second argument yields the identity mapping.

Example 10. For 3D rotations A,B∈ SO(3) we have φ(A,B)= AT B, and AdBT A[−ω]× = [−BT Aω]×,
hence the Jacobian matrix φ ′(A,B) of between is given by

φ ′(A,B) =
[ (

−BT A
)

I3
]
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5.7 Numerical PushForward
Let’s examine

f (g)eŷ = f
(
gex̂)

and multiply with f (g)−1 on both sides:

eŷ = f (g)−1 f
(
gex̂)

We then take the log (which in our case returns y, not ŷ):

y(x) = log
[

f (g)−1 f
(
gex̂)]

Let us look at x = 0, and perturb in direction i, ei = [0,0,1,0,0]. Then take derivative,

∂y(d)
∂d

∆= lim
d→0

y(d)− y(0)
d

= lim
d→0

1
d

log
[

f (g)−1 f
(

ged̂ei
)]

which is the basis for a numerical derivative scheme.

5.8 Derivative of the Exponential and Logarithm Map
Theorem 9. The derivative of the function f : Rn → G that applies the wedge operator followed
by the exponential map, i.e., f (ξ ) = exp ξ̂ , is the identity map for ξ = 0.

Proof. For ξ = 0, we have

f (ξ )eŷ = f (ξ + x)
f (0)eŷ = f (0+ x)

eŷ = ex̂

Corollary 1. The derivative of the inverse f−1 is the identity as well, i.e., for T = e, the identity
element in G.

For ξ ̸= 0, things are not simple, see . http://deltaepsilons.wordpress.com/2009/11/
06/helgasons-formula-for-the-differential-of-the-exponential/.
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6 General Manifolds

6.1 Retractions
General manifolds that are not Lie groups do not have an exponential map, but can still be handled
by defining a retraction R : M ×Rn → M , such that

a⊕ξ ∆= Ra (ξ )

A retraction [1] is required to be tangent to geodesics on the manifold M at a. We can define
many retractions for a manifold M , even for those with more structure. For the vector space Rn the
retraction is just vector addition, and for Lie groups the obvious retraction is simply the exponential
map, i.e., Ra(ξ ) = a · exp ξ̂ . However, one can choose other, possibly computationally attractive
retractions, as long as around a they agree with the geodesic induced by the exponential map, i.e.,

lim
ξ→0

∣∣∣a · exp ξ̂ −Ra (ξ )
∣∣∣

|ξ |
= 0

Example 11. For SE(3), instead of using the true exponential map it is computationally more
efficient to define the retraction, which uses a first order approximation of the translation update

RT

([
ω
v

])
=

[
R t
0 1

][
e[ω ]× v

0 1

]
=

[
Re[ω]× t +Rv

0 1

]

6.2 Derivatives
Equipped with a retraction, then, we can generalize the notion of a derivative for functions f from
general a manifold M to Rm:

Definition 4. We define a function f : M → Rm to be differentiable at a ∈ M if there exists a
matrix f ′(a) such that

lim
ξ→0

| f (a)+ f ′(a)ξ − f (Ra(ξ ))|
|ξ |

= 0

with ξ ∈ Rn for an n-dimensional manifold, and Ra : Rn → M a retraction R at a. If f is
differentiable, then f ′(a) is called the Jacobian matrix of f at a, and the linear transformation
D fa : ξ 7→ f ′(a)ξ is called the derivative of f at a.

For manifolds that are also Lie groups, the derivative of any function f : G → Rm will agree no
matter what retraction R is used.
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Part II

Practice
Below we apply the results derived in the theory part to the geometric objects we use in GTSAM.
Above we preferred the modern notation D1 f for the partial derivative. Below (because this was
written earlier) we use the more classical notation

∂ f (x,y)
∂x

In addition, for Lie groups we will abuse the notation and take

∂φ(g)
∂ξ

∣∣∣∣
a

to be the Jacobian matrix φ ′(a) of the mapping φ at a ∈ G, associated with the pushforward Dφa.

7 SLAM Example
Let us examine a visual SLAM example. We have 2D measurements zi j, where each measurement
is predicted by

zi j = h(Ti, p j) = π(T−1
i p j)

where Ti is the 3D pose of the ith camera, p j is the location of the jth point, and π : (x,y,z) 7→
(x/z,y/z) is the camera projection function from Example 1.

8 BetweenFactor
BetweenFactor is often used to summarize

Theorem 9 about the derivative of the exponential map f : ξ 7→ exp ξ̂ being identity only at
ξ = 0 has implications for GTSAM. Given two elements T1 and T2, BetweenFactor evaluates

g(T1,T2;Z) = f−1 (between(Z,between(T1,T2)) = f−1 (
Z−1 (

T−1
1 T2

))
but because it is assumed that Z ≈ T−1

1 T2, and hence we have Z−1T−1
1 T2 ≈ e and the derivative

should be good there. Note that the derivative of between is identity in its second argument.

9 Point3
A cross product a×b can be written as a matrix multiplication

a×b = [a]×b
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where [a]× is a skew-symmetric matrix defined as

[x,y,z]× =

 0 −z y
z 0 −x
−y x 0


We also have

aT [b]× = −([b]×a)T = −(a×b)T

The derivative of a cross product
∂ (a×b)

∂a
= [−b]× (9.1)

∂ (a×b)
∂b

= [a]× (9.2)
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10 2D Rotations

10.1 Rot2 in GTSAM
A rotation is stored as (cosθ ,sinθ). An incremental rotation is applied using the trigonometric
sum rule:

cosθ ′ = cosθ cosδ − sinθ sinδ

sinθ ′ = sinθ cosδ + cosθ sinδ

where δ is an incremental rotation angle.

10.2 Derivatives of Actions
In the case of SO(2) the vector space is R2, and the group action f (R, p) corresponds to rotating
the 2D point p

f (R, p) = Rp

According to Theorem 3, the Jacobian matrix of f is given by

f ′(R, p) =
[

RH(p) R
]

with H : R2 → R2×2 a linear mapping that depends on p. In the case of SO(2), we can find H(p)
by equating (as in Equation 3.1):

[w]+p =
[

0 −ω
ω 0

][
x
y

]
=

[
−y
x

]
ω = H(p)ω

Note that

H(p) =
[
−y
x

]
=

[
0 −1
1 0

][
x
y

]
= Rπ/2 p

and since 2D rotations commute, we also have, with q = Rp:

f ′(R, p) =
[

R
(
Rπ/2 p

)
R

]
=

[
Rπ/2q R

]
10.3 Pushforwards of Mappings
Since AdR[ω ]+ = [ω]+, we have the derivative of inverse,

∂RT

∂ω
= −AdR = −1

compose,
∂ (R1R2)

∂ω1
= AdRT

2
= 1 and

∂ (R1R2)
∂ω2

= 1

and between:
∂

(
RT

1 R2
)

∂ω1
= −AdRT

2 R1
= −1 and

∂
(
RT

1 R2
)

∂ω2
= 1

14



11 2D Rigid Transformations

11.1 The derivatives of Actions
The action of SE(2) on 2D points is done by embedding the points in R3 by using homogeneous
coordinates

f (T, p) = q̂ =
[

q
1

]
=

[
R t
0 1

][
p
1

]
= T p̂

To find the derivative, we write the quantity ξ̂ p̂ as the product of the 3×3 matrix H(p) with ξ :

ξ̂ p̂ =
[

[ω]+ v
0 0

][
p
1

]
=

[
[ω ]+p+ v

0

]
=

[
I2 Rπ/2 p
0 0

][
v
ω

]
= H(p)ξ (11.1)

Hence, by Theorem 3 we have

∂ (T p̂)
∂ξ

= T H(p) =
[

R t
0 1

][
I2 Rπ/2 p
0 0

]
=

[
R RRπ/2 p
0 0

]
=

[
R Rπ/2q
0 0

]
(11.2)

Note that, looking only at the top rows of (11.1) and (11.2), we can recognize the quantity [ω]+p+
v = v + ω

(
Rπ/2 p

)
as the velocity of p in R2, and

[
R Rπ/2q

]
is the derivative of the action on

R2.
The derivative of the inverse action g(T, p) = T−1 p̂ is given by Theorem 4 specialized to SE(2):

∂
(
T−1 p̂

)
∂ξ

= −H(T−1 p) =
[
−I2 −Rπ/2

(
T−1 p

)
0 0

]

11.2 Pushforwards of Mappings
We can just define all derivatives in terms of the adjoint map, which in the case of SE(2), in twist
coordinates, is the linear mapping

AdT ξ =
[

R −Rπ/2t
0 1

][
v
ω

]
and we have

∂T
−1

∂ξ
= −AdT

∂ (T1T2)
∂ξ1

= Ad
T−1

2
and

∂ (T1T2)
∂ξ2

= I3

∂
(
T−1

1 T2
)

∂ξ1
= −Ad

T−1
2 T1

= −Adbetween(T2,T1) and
∂

(
T−1

1 T2
)

∂ξ2
= I3
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12 3D Rotations

12.1 Derivatives of Actions
In the case of SO(3) the vector space is R3, and the group action f (R, p) corresponds to rotating a
point

q = f (R, p) = Rp

To calculate H(p) for use in Theorem (3) we make use of

[ω]×p = ω × p = −p×ω = [−p]×ω

so H(p) ∆= [−p]×. Hence, the final derivative of an action in its first argument is

∂ (Rp)
∂ω

= RH(p) = −R[p]×

Likewise, according to Theorem 4, the derivative of the inverse action is given by

∂
(
RT p

)
∂ω

= −H(RT p) = [RT p]×

12.2 Instantaneous Velocity
For 3D rotations Rn

b from a body frame b to a navigation frame n we have the spatial angular
velocity ωn

nb measured in the navigation frame,

[ωn
nb]×

∆= Ṙn
b (Rn

b)
T = Ṙn

bRb
n

and the body angular velocity ωb
nb measured in the body frame:

[ωb
nb]×

∆= (Rn
b)

T Ṙn
b = Rb

nṘn
b

These quantities can be used to derive the velocity of a point p, and we choose between spatial or
body angular velocity depending on the frame in which we choose to represent p:

vn = [ωn
nb]×pn = ωn

nb × pn

vb = [ωb
nb]×pb = ωb

nb × pb

We can transform these skew-symmetric matrices from navigation to body frame by conjugating,

[ωb
nb]× = Rb

n[ωn
nb]×Rn

b

but because the adjoint representation satisfies

AdR[ω]×
∆= R[ω]×RT = [Rω ]×

we can even more easily transform between spatial and body angular velocities as 3-vectors:

ωb
nb = Rb

nωn
nb

16



12.3 Pushforwards of Mappings
For SO(3) we have AdR[ω]× = [Rω]× and, in terms of angular velocities: AdRω = Rω . Hence, the
Jacobian matrix of the inverse mapping is (see Equation 5.3)

∂RT

∂ω
= −AdR = −R

for compose we have (Equations 5.4 and 5.5):

∂ (R1R2)
∂ω1

= RT
2 and

∂ (R1R2)
∂ω2

= I3

and between (Equation 5.6):

∂
(
RT

1 R2
)

∂ω1
= −RT

2 R1 = −between(R2,R1) and
∂ (R1R2)

∂ω2
= I3

12.4 Retractions
Absil [1, page 58] discusses two possible retractions for SO(3) based on the QR decomposition
or the polar decomposition of the matrix R[ω]×, but they are expensive. Another retraction is
based on the Cayley transform C : so(3) → SO(3), a mapping from the skew-symmetric matrices
to rotation matrices:

Q = C (Ω) = (I −Ω)(I +Ω)−1

Interestingly, the inverse Cayley transform C−1 : SO(3) → so(3) has the same form:

Ω = C−1(Q) = (I −Q)(I +Q)−1

The retraction needs a factor −1
2 however, to make it locally align with a geodesic:

R′ = RR(ω) = RC (−1
2
[ω]×)

Note that given ω = (x,y,z) this has the closed-form expression below

1
4+ x2 + y2 + z2

 4+ x2 − y2 − z2 2xy−4z 2xz+4y
2xy+4z 4− x2 + y2 − z2 2yz−4x
2xz−4y 2yz+4x 4− x2 − y2 + z2



=
1

4+ x2 + y2 + z2

4(I +[ω]×)+

 x2 − y2 − z2 2xy 2xz
2xy −x2 + y2 − z2 2yz
2xz 2yz −x2 − y2 + z2


so it can be seen to be a second-order correction on (I +[ω]×). The corresponding approximation
to the logarithmic map is:

[ω]× = R−1
R (R′) = −2C−1 (

RT R′)

17



13 3D Rigid Transformations

13.1 The derivatives of Actions
The action of SE(3) on 3D points is done by embedding the points in R4 by using homogeneous
coordinates

q̂ =
[

q
1

]
= f (T, p) =

[
R t
0 1

][
p
1

]
= T p̂

The quantity ξ̂ p̂ corresponds to a velocity in R4 (in the local T frame), and equating it to H(p)ξ
as in Equation 3.1 yields the 4×6 matrix H(p)1:

ξ̂ p̂ =
[

[ω]× v
0 0

][
p
1

]
=

[
ω × p+ v

0

]
=

[
[−p]× I3

0 0

][
ω
v

]
= H(p)ξ

Note how velocities are analogous to points at infinity in projective geometry: they correspond
to free vectors indicating a direction and magnitude of change. According to Theorem 3, the
derivative of the group action is then

∂ (T p̂)
∂ξ

= T H(p) =
[

R t
0 1

][
[−p]× I3

0 0

]
=

[
R[−p]× R

0 0

]
∂ (T p̂)

∂ p̂
=

[
R t
0 1

]
in homogenous coordinates. In R3 this becomes R

[
−[p]× I3

]
.

The derivative of the inverse action T−1 p is given by Theorem 4:

∂
(
T−1 p̂

)
∂ξ

= −H
(
T−1 p̂

)
=

[
[T−1 p̂]× −I3

]
∂

(
T−1 p̂

)
∂ p̂

=
[

RT −RT t
0 1

]
Example 12. Let us examine a visual SLAM example. We have 2D measurements zi j, where each
measurement is predicted by

zi j = h(Ti, p j) = π(T−1
i p j) = π(q)

where Ti is the 3D pose of the ith camera, p j is the location of the jth point, q = (x′,y′,z′) = T−1 p
is the point in camera coordinates, and π : (x,y,z) 7→ (x/z,y/z) is the camera projection function
from Example 1. By the chain rule, we then have

∂h(T, p)
∂ξ

=
∂π(q)

∂q
∂ (T−1 p)

∂ξ
=

1
z′

[
1 0 −x′/z′

0 1 −y′/z′

][
[q]× −I3

]
=

[
π ′(q)[q]× −π ′(q)

]
∂h(T, p)

∂ p
= π ′(q)RT

1H(p) can also be obtained by taking the jth column of each of the 6 generators to multiply with components of p̂

18



13.2 Instantaneous Velocity
For rigid 3D transformations T n

b from a body frame b to a navigation frame n we have the instan-
taneous spatial twist ξ n

nb measured in the navigation frame,

ξ̂ n
nb

∆= Ṫ n
b (T n

b )−1

and the instantaneous body twist ξ b
nb measured in the body frame:

ξ̂ b
nb

∆= (T n
b )T Ṫ n

b

13.3 Pushforwards of Mappings
As we can express the Adjoint representation in terms of twist coordinates, we have[

ω ′

v′

]
=

[
R 0

[t]×R R

][
ω
v

]
Hence, as with SO(3), we are now in a position to simply posit the derivative of inverse,

∂T−1

∂ξ
= −AdT = −

[
R 0

[t]×R R

]
compose in its first argument,

∂ (T1T2)
∂ξ1

= AdT−1
2

in its second argument,
∂ (T1T2)

∂ξ2
= I6

between in its first argument,
∂

(
T

−1

1 T2

)
∂ξ1

= −Ad
T−1

2 T1

and in its second argument,

∂
(

T
−1

1 T2

)
∂ξ1

= I6

13.4 Retractions
For SE(3), instead of using the true exponential map it is computationally more efficient to design
other retractions. A first-order approximation to the exponential map does not quite cut it, as it
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yields a 4×4 matrix which is not in SE(3):

T exp ξ̂ ≈ T (I + ξ̂ )

= T
(

I4 +
[

[ω ]× v
0 0

])
=

[
R t
0 1

][
I3 +[ω]× v

0 1

]
=

[
R(I3 +[ω ]×) t +Rv

0 1

]
However, we can make it into a retraction by using any retraction defined for SO(3), including, as
below, using the exponential map Re[ω]×:

RT

([
ω
v

])
=

[
R t
0 1

][
e[ω ]× v

0 1

]
=

[
Re[ω]× t +Rv

0 1

]
Similarly, for a second order approximation we have

T exp ξ̂ ≈ T (I + ξ̂ +
ξ̂ 2

2
)

= T
(

I4 +
[

[ω ]× v
0 0

]
+

1
2

[
[ω]× v

0 0

][
[ω]× v

0 0

])
=

[
R t
0 1

]([
I3 +[ω]× + 1

2 [ω ]2× v+ 1
2 [ω]×v

0 1

])
=

[
R

(
I3 +[ω]× + 1

2 [ω]2×
)

t +R [v+(ω × v)/2]
0 1

]
inspiring the retraction

RT

([
ω
v

])
=

[
R t
0 1

][
e[ω ]× v+(ω × v)/2

0 1

]
=

[
Re[ω]× t +R [v+(ω × v)/2]

0 1

]
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14 2D Line Segments (Ocaml)
The error between an infinite line (a,b,c) and a 2D line segment ((x1,y1),(x2,y2)) is defined in
Line3.ml.

15 Line3vd (Ocaml)
One representation of a line is through 2 vectors (v,d), where v is the direction and the vector d
points from the orgin to the closest point on the line.

In this representation, transforming a 3D line from a world coordinate frame to a camera at
(Rc

w, tw) is done by
vc = Rc

wvw

dc = Rc
w (dw +(twvw)vw − tw)

16 Line3 (Ocaml)
For 3D lines, we use a parameterization due to C.J. Taylor, using a rotation matrix R and 2 scalars
a and b. The line direction v is simply the Z-axis of the rotated frame, i.e., v = R3, while the vector
d is given by d = aR1 +bR2.

Now, we will not use the incremental rotation scheme we used for rotations: because the matrix
R translates from the line coordinate frame to the world frame, we need to apply the incremental
rotation on the right-side:

R′ = R(I +Ω)

Projecting a line to 2D can be done easily, as both v and d are also the 2D homogenous coordinates
of two points on the projected line, and hence we have

l = v×d
= R3 × (aR1 +bR2)
= a(R3 ×R1)+b(R3 ×R2)
= aR2 −bR1

This can be written as a rotation of a point,

l = R

 −b
a
0


but because the incremental rotation is now done on the right, we need to figure out the derivatives
again:

∂ (R(I +Ω)x)
∂ω

=
∂ (RΩx)

∂ω
= R

∂ (Ωx)
∂ω

= R[−x]× (16.1)
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and hence the derivative of the projection l with respect to the rotation matrix Rof the 3D line is

∂ (l)
∂ω

= R[

 b
−a
0

]× =
[

aR3 bR3 −(aR1 +bR2)
]

(16.2)

or the a,b scalars:
∂ (l)
∂a

= R2

∂ (l)
∂b

= −R1

Transforming a 3D line (R,(a,b)) from a world coordinate frame to a camera frame (Rc
w, tw) is

done by

R′ = Rc
wR

a′ = a−RT
1 tw

b′ = b−RT
2 tw

Again, we need to redo the derivatives, as R is incremented from the right. The first argument is
incremented from the left, but the result is incremented on the right:

R′(I +Ω′) = (AB)(I +Ω′) = (I +[Sω]×)AB
I +Ω′ = (AB)T (I +[Sω]×)(AB)

Ω′ = R′T [Sω ]×R′

Ω′ = [R′T Sω ]×
ω ′ = R′T Sω

For the second argument R we now simply have:

AB(I +Ω′) = AB(I +Ω)
Ω′ = Ω
ω ′ = ω

The scalar derivatives can be found by realizing that a′

b′

...

 =

 a
b
0

−RT tw

where we don’t care about the third row. Hence

∂ ((R(I +Ω2))
T tw)

∂ω
= −∂ (Ω2RT tw)

∂ω
= −[RT tw]× =

 0 RT
3 tw −RT

2 tw

−RT
3 tw 0 RT

1 tw

... ... 0


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17 Aligning 3D Scans
Below is the explanaition underlying Pose3.align, i.e. aligning two point clouds using SVD. In-
spired but modified from CVOnline...

Our model is
pc = R(pw − t)

i.e., R is from camera to world, and t is the camera location in world coordinates. The objective
function is

1
2 ∑(pc −R(pw − t))2 =

1
2 ∑(pc −Rpw +Rt)2 =

1
2 ∑

(
pc −Rpw − t ′

)2 (17.1)

where t ′ =−Rt is the location of the origin in the camera frame. Taking the derivative with respect
to t ′ and setting to zero we have

∑
(

pc −Rpw − t ′
)

= 0

or
t ′ =

1
n ∑(pc −Rpw) = p̄c −Rp̄w (17.2)

here p̄c and p̄w are the point cloud centroids. Substituting back into (17.1), we get

1
2 ∑(pc −R(pw − t))2 =

1
2 ∑((pc − p̄c)−R(pw − p̄w))2 =

1
2 ∑(p̂c −Rp̂w)2

Now, to minimize the above it suffices to maximize (see CVOnline)

trace
(
RTC

)
where C = ∑ p̂c (p̂w)T is the correlation matrix. Intuitively, the cloud of points is rotated to align
with the principal axes. This can be achieved by SVD decomposition on C

C = USV T

and setting
R = UV T

Clearly, from (17.2) we then also recover the optimal t as

t = p̄w −RT p̄c

Appendix

Differentiation Rules
Spivak [4] also notes some multivariate derivative rules defined component-wise, but they are not
that useful in practice:
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• Since f : Rn → Rm is defined in terms of m component functions f i, then f is differentiable
at a iff each f i is, and the Jacobian matrix Fa is the m×n matrix whose ith row is

(
f i)′ (a):

Fa
∆= f ′(a) =


(

f 1)′ (a)
...

( f m)′ (a)


• Scalar differentiation rules: if f ,g : Rn → R are differentiable at a, then

( f +g)′(a) = Fa +Ga

( f ·g)′(a) = g(a)Fa + f (a)Ga

( f /g)′(a) =
1

g(a)2 [g(a)Fa − f (a)Ga]

Tangent Spaces and the Tangent Bundle
The following is adapted from Appendix A in [3].

The tangent space TpM of a manifold M at a point p∈M is the vector space of tangent vectors
at p. The tangent bundle T M is the set of all tangent vectors

T M ∆=
∪

p∈M

TpM

A vector field X : M → T M assigns a single tangent vector x ∈ TpM to each point p.
If F : M → N is a smooth map from a manifold M to a manifold N, then we can define the

tangent map of F at p as the linear map F∗p : TpM → TF(p)N that maps tangent vectors in TpM at
p to tangent vectors in TF(p)N at the image F(p).

Homomorphisms
The following might be relevant [2, page 45]: suppose that Φ : G → H is a mapping (Lie group
homomorphism). Then there exists a unique linear map ϕ : g → h

ϕ(x̂) ∆= lim
t→0

d
dt

Φ
(
etx̂)

such that

1. Φ
(
ex̂) = eϕ(x̂)

2. ϕ
(
T x̂T−1) = Φ(T )ϕ(x̂)Φ(T−1)

3. ϕ ([x̂, ŷ]) = [ϕ(x̂),ϕ(ŷ)]

In other words, the map ϕ is the derivative of Φ at the identity. As an example, suppose Φ(g) = g−1,
then the corresponding derivative at the identity is

ϕ(x̂) ∆= lim
t→0

d
dt

(
etx̂)−1

= lim
t→0

d
dt

e−tx̂ = −x̂ lim
t→0

e−tx̂ = −x̂

In general it suffices to compute ϕ for a basis of g.
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