/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file GaussianBayesNet.h * @brief Chordal Bayes Net, the result of eliminating a factor graph * @brief GaussianBayesNet * @author Frank Dellaert */ // \callgraph #pragma once #include #include #include namespace gtsam { /** A Bayes net made from linear-Gaussian densities */ typedef BayesNet GaussianBayesNet; /** Create a scalar Gaussian */ GaussianBayesNet scalarGaussian(Index key, double mu=0.0, double sigma=1.0); /** Create a simple Gaussian on a single multivariate variable */ GaussianBayesNet simpleGaussian(Index key, const Vector& mu, double sigma=1.0); /** * Add a conditional node with one parent * |Rx+Sy-d| */ void push_front(GaussianBayesNet& bn, Index key, Vector d, Matrix R, Index name1, Matrix S, Vector sigmas); /** * Add a conditional node with two parents * |Rx+Sy+Tz-d| */ void push_front(GaussianBayesNet& bn, Index key, Vector d, Matrix R, Index name1, Matrix S, Index name2, Matrix T, Vector sigmas); /** * Allocate a VectorValues for the variables in a BayesNet */ boost::shared_ptr allocateVectorValues(const GaussianBayesNet& bn); /** * Solve the GaussianBayesNet, i.e. return \f$ x = R^{-1}*d \f$, computed by * back-substitution. */ VectorValues optimize(const GaussianBayesNet& bn); /** * Solve the GaussianBayesNet, i.e. return \f$ x = R^{-1}*d \f$, computed by * back-substitution, writes the solution \f$ x \f$ into a pre-allocated * VectorValues. You can use allocateVectorValues(const GaussianBayesNet&) * allocate it. See also optimize(const GaussianBayesNet&), which does not * require pre-allocation. */ void optimizeInPlace(const GaussianBayesNet& bn, VectorValues& x); /** * Optimize along the gradient direction, with a closed-form computation to * perform the line search. The gradient is computed about \f$ \delta x=0 \f$. * * This function returns \f$ \delta x \f$ that minimizes a reparametrized * problem. The error function of a GaussianBayesNet is * * \f[ f(\delta x) = \frac{1}{2} |R \delta x - d|^2 = \frac{1}{2}d^T d - d^T R \delta x + \frac{1}{2} \delta x^T R^T R \delta x \f] * * with gradient and Hessian * * \f[ g(\delta x) = R^T(R\delta x - d), \qquad G(\delta x) = R^T R. \f] * * This function performs the line search in the direction of the * gradient evaluated at \f$ g = g(\delta x = 0) \f$ with step size * \f$ \alpha \f$ that minimizes \f$ f(\delta x = \alpha g) \f$: * * \f[ f(\alpha) = \frac{1}{2} d^T d + g^T \delta x + \frac{1}{2} \alpha^2 g^T G g \f] * * Optimizing by setting the derivative to zero yields * \f$ \hat \alpha = (-g^T g) / (g^T G g) \f$. For efficiency, this function * evaluates the denominator without computing the Hessian \f$ G \f$, returning * * \f[ \delta x = \hat\alpha g = \frac{-g^T g}{(R g)^T(R g)} \f] * * @param bn The GaussianBayesNet on which to perform this computation * @return The resulting \f$ \delta x \f$ as described above */ VectorValues optimizeGradientSearch(const GaussianBayesNet& bn); /** In-place version of optimizeGradientSearch(const GaussianBayesNet&) requiring pre-allocated VectorValues \c grad * * @param bn The GaussianBayesNet on which to perform this computation * @param [out] grad The resulting \f$ \delta x \f$ as described in optimizeGradientSearch(const GaussianBayesNet&) * */ void optimizeGradientSearchInPlace(const GaussianBayesNet& bn, VectorValues& grad); /** * Transpose Backsubstitute * gy=inv(L)*gx by solving L*gy=gx. * gy=inv(R'*inv(Sigma))*gx * gz'*R'=gx', gy = gz.*sigmas */ VectorValues backSubstituteTranspose(const GaussianBayesNet& bn, const VectorValues& gx); /** * Return (dense) upper-triangular matrix representation * NOTE: if this is the result of elimination with LDL, the matrix will * not necessarily be upper triangular due to column permutations */ std::pair matrix(const GaussianBayesNet&); /** * Computes the determinant of a GassianBayesNet * A GaussianBayesNet is an upper triangular matrix and for an upper triangular matrix * determinant is the product of the diagonal elements. Instead of actually multiplying * we add the logarithms of the diagonal elements and take the exponent at the end * because this is more numerically stable. * @param bayesNet The input GaussianBayesNet * @return The determinant */ double determinant(const GaussianBayesNet& bayesNet); /** * Compute the gradient of the energy function, * \f$ \nabla_{x=x_0} \left\Vert \Sigma^{-1} R x - d \right\Vert^2 \f$, * centered around \f$ x = x_0 \f$. * The gradient is \f$ R^T(Rx-d) \f$. * @param bayesNet The Gaussian Bayes net $(R,d)$ * @param x0 The center about which to compute the gradient * @return The gradient as a VectorValues */ VectorValues gradient(const GaussianBayesNet& bayesNet, const VectorValues& x0); /** * Compute the gradient of the energy function, * \f$ \nabla_{x=0} \left\Vert \Sigma^{-1} R x - d \right\Vert^2 \f$, * centered around zero. * The gradient about zero is \f$ -R^T d \f$. See also gradient(const GaussianBayesNet&, const VectorValues&). * @param bayesNet The Gaussian Bayes net $(R,d)$ * @param [output] g A VectorValues to store the gradient, which must be preallocated, see allocateVectorValues * @return The gradient as a VectorValues */ void gradientAtZero(const GaussianBayesNet& bayesNet, VectorValues& g); } /// namespace gtsam