/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file ImuFactorsExample * @brief Test example for using GTSAM ImuFactor and ImuCombinedFactor * navigation code. * @author Garrett (ghemann@gmail.com), Luca Carlone */ /** * Example of use of the imuFactors (imuFactor and combinedImuFactor) in * conjunction with GPS * - imuFactor is used by default. You can test combinedImuFactor by * appending a `-c` flag at the end (see below for example command). * - we read IMU and GPS data from a CSV file, with the following format: * A row starting with "i" is the first initial position formatted with * N, E, D, qx, qY, qZ, qW, velN, velE, velD * A row starting with "0" is an imu measurement * linAccN, linAccE, linAccD, angVelN, angVelE, angVelD * A row starting with "1" is a gps correction formatted with * N, E, D, qX, qY, qZ, qW * Note that for GPS correction, we're only using the position not the * rotation. The rotation is provided in the file for ground truth comparison. * * Usage: ./ImuFactorsExample [data_csv_path] [-c] * optional arguments: * data_csv_path path to the CSV file with the IMU data. * -c use CombinedImuFactor * Note: Define USE_LM to use Levenberg Marquardt Optimizer * By default ISAM2 is used */ // GTSAM related includes. #include #include #include #include #include #include #include #include #include #include #include #include // Uncomment the following to use Levenberg Marquardt Optimizer // #define USE_LM using namespace gtsam; using namespace std; using symbol_shorthand::B; // Bias (ax,ay,az,gx,gy,gz) using symbol_shorthand::V; // Vel (xdot,ydot,zdot) using symbol_shorthand::X; // Pose3 (x,y,z,r,p,y) static const char output_filename[] = "imuFactorExampleResults.csv"; static const char use_combined_imu_flag[3] = "-c"; int main(int argc, char* argv[]) { string data_filename; bool use_combined_imu = false; #ifndef USE_LM printf("Using ISAM2\n"); ISAM2Params parameters; parameters.relinearizeThreshold = 0.01; parameters.relinearizeSkip = 1; ISAM2 isam2(parameters); #else printf("Using Levenberg Marquardt Optimizer\n"); #endif if (argc < 2) { printf("using default CSV file\n"); data_filename = findExampleDataFile("imuAndGPSdata.csv"); } else if (argc < 3) { if (strcmp(argv[1], use_combined_imu_flag) == 0) { printf("using CombinedImuFactor\n"); use_combined_imu = true; printf("using default CSV file\n"); data_filename = findExampleDataFile("imuAndGPSdata.csv"); } else { data_filename = argv[1]; } } else { data_filename = argv[1]; if (strcmp(argv[2], use_combined_imu_flag) == 0) { printf("using CombinedImuFactor\n"); use_combined_imu = true; } } // Set up output file for plotting errors FILE* fp_out = fopen(output_filename, "w+"); fprintf(fp_out, "#time(s),x(m),y(m),z(m),qx,qy,qz,qw,gt_x(m),gt_y(m),gt_z(m),gt_qx," "gt_qy,gt_qz,gt_qw\n"); // Begin parsing the CSV file. Input the first line for initialization. // From there, we'll iterate through the file and we'll preintegrate the IMU // or add in the GPS given the input. ifstream file(data_filename.c_str()); string value; // Format is (N,E,D,qX,qY,qZ,qW,velN,velE,velD) Vector10 initial_state; getline(file, value, ','); // i for (int i = 0; i < 9; i++) { getline(file, value, ','); initial_state(i) = atof(value.c_str()); } getline(file, value, '\n'); initial_state(9) = atof(value.c_str()); cout << "initial state:\n" << initial_state.transpose() << "\n\n"; // Assemble initial quaternion through GTSAM constructor // ::quaternion(w,x,y,z); Rot3 prior_rotation = Rot3::Quaternion(initial_state(6), initial_state(3), initial_state(4), initial_state(5)); Point3 prior_point(initial_state.head<3>()); Pose3 prior_pose(prior_rotation, prior_point); Vector3 prior_velocity(initial_state.tail<3>()); imuBias::ConstantBias prior_imu_bias; // assume zero initial bias Values initial_values; int correction_count = 0; initial_values.insert(X(correction_count), prior_pose); initial_values.insert(V(correction_count), prior_velocity); initial_values.insert(B(correction_count), prior_imu_bias); // Assemble prior noise model and add it the graph.` auto pose_noise_model = noiseModel::Diagonal::Sigmas( (Vector(6) << 0.01, 0.01, 0.01, 0.5, 0.5, 0.5) .finished()); // rad,rad,rad,m, m, m auto velocity_noise_model = noiseModel::Isotropic::Sigma(3, 0.1); // m/s auto bias_noise_model = noiseModel::Isotropic::Sigma(6, 1e-3); // Add all prior factors (pose, velocity, bias) to the graph. NonlinearFactorGraph* graph = new NonlinearFactorGraph(); graph->addPrior(X(correction_count), prior_pose, pose_noise_model); graph->addPrior(V(correction_count), prior_velocity, velocity_noise_model); graph->addPrior(B(correction_count), prior_imu_bias, bias_noise_model); // We use the sensor specs to build the noise model for the IMU factor. double accel_noise_sigma = 0.0003924; double gyro_noise_sigma = 0.000205689024915; double accel_bias_rw_sigma = 0.004905; double gyro_bias_rw_sigma = 0.000001454441043; Matrix33 measured_acc_cov = I_3x3 * pow(accel_noise_sigma, 2); Matrix33 measured_omega_cov = I_3x3 * pow(gyro_noise_sigma, 2); Matrix33 integration_error_cov = I_3x3 * 1e-8; // error committed in integrating position from velocities Matrix33 bias_acc_cov = I_3x3 * pow(accel_bias_rw_sigma, 2); Matrix33 bias_omega_cov = I_3x3 * pow(gyro_bias_rw_sigma, 2); Matrix66 bias_acc_omega_int = I_6x6 * 1e-5; // error in the bias used for preintegration auto p = PreintegratedCombinedMeasurements::Params::MakeSharedD(0.0); // PreintegrationBase params: p->accelerometerCovariance = measured_acc_cov; // acc white noise in continuous p->integrationCovariance = integration_error_cov; // integration uncertainty continuous // should be using 2nd order integration // PreintegratedRotation params: p->gyroscopeCovariance = measured_omega_cov; // gyro white noise in continuous // PreintegrationCombinedMeasurements params: p->biasAccCovariance = bias_acc_cov; // acc bias in continuous p->biasOmegaCovariance = bias_omega_cov; // gyro bias in continuous p->biasAccOmegaInt = bias_acc_omega_int; std::shared_ptr preintegrated = nullptr; if (use_combined_imu) { preintegrated = std::make_shared(p, prior_imu_bias); } else { preintegrated = std::make_shared(p, prior_imu_bias); } assert(preintegrated); // Store previous state for imu integration and latest predicted outcome. NavState prev_state(prior_pose, prior_velocity); NavState prop_state = prev_state; imuBias::ConstantBias prev_bias = prior_imu_bias; // Keep track of total error over the entire run as simple performance metric. double current_position_error = 0.0, current_orientation_error = 0.0; double output_time = 0.0; double dt = 0.005; // The real system has noise, but here, results are nearly // exactly the same, so keeping this for simplicity. // All priors have been set up, now iterate through the data file. while (file.good()) { // Parse out first value getline(file, value, ','); int type = atoi(value.c_str()); if (type == 0) { // IMU measurement Vector6 imu; for (int i = 0; i < 5; ++i) { getline(file, value, ','); imu(i) = atof(value.c_str()); } getline(file, value, '\n'); imu(5) = atof(value.c_str()); // Adding the IMU preintegration. preintegrated->integrateMeasurement(imu.head<3>(), imu.tail<3>(), dt); } else if (type == 1) { // GPS measurement Vector7 gps; for (int i = 0; i < 6; ++i) { getline(file, value, ','); gps(i) = atof(value.c_str()); } getline(file, value, '\n'); gps(6) = atof(value.c_str()); correction_count++; // Adding IMU factor and GPS factor and optimizing. if (use_combined_imu) { auto preint_imu_combined = dynamic_cast( *preintegrated); CombinedImuFactor imu_factor( X(correction_count - 1), V(correction_count - 1), X(correction_count), V(correction_count), B(correction_count - 1), B(correction_count), preint_imu_combined); graph->add(imu_factor); } else { auto preint_imu = dynamic_cast(*preintegrated); ImuFactor imu_factor(X(correction_count - 1), V(correction_count - 1), X(correction_count), V(correction_count), B(correction_count - 1), preint_imu); graph->add(imu_factor); imuBias::ConstantBias zero_bias(Vector3(0, 0, 0), Vector3(0, 0, 0)); graph->add(BetweenFactor( B(correction_count - 1), B(correction_count), zero_bias, bias_noise_model)); } auto correction_noise = noiseModel::Isotropic::Sigma(3, 1.0); GPSFactor gps_factor(X(correction_count), Point3(gps(0), // N, gps(1), // E, gps(2)), // D, correction_noise); graph->add(gps_factor); // Now optimize and compare results. prop_state = preintegrated->predict(prev_state, prev_bias); initial_values.insert(X(correction_count), prop_state.pose()); initial_values.insert(V(correction_count), prop_state.v()); initial_values.insert(B(correction_count), prev_bias); Values result; #ifdef USE_LM LevenbergMarquardtOptimizer optimizer(*graph, initial_values); result = optimizer.optimize(); #else isam2.update(*graph, initial_values); isam2.update(); result = isam2.calculateEstimate(); // reset the graph graph->resize(0); initial_values.clear(); #endif // Overwrite the beginning of the preintegration for the next step. prev_state = NavState(result.at(X(correction_count)), result.at(V(correction_count))); prev_bias = result.at(B(correction_count)); // Reset the preintegration object. preintegrated->resetIntegrationAndSetBias(prev_bias); // Print out the position and orientation error for comparison. Vector3 gtsam_position = prev_state.pose().translation(); Vector3 position_error = gtsam_position - gps.head<3>(); current_position_error = position_error.norm(); Quaternion gtsam_quat = prev_state.pose().rotation().toQuaternion(); Quaternion gps_quat(gps(6), gps(3), gps(4), gps(5)); Quaternion quat_error = gtsam_quat * gps_quat.inverse(); quat_error.normalize(); Vector3 euler_angle_error(quat_error.x() * 2, quat_error.y() * 2, quat_error.z() * 2); current_orientation_error = euler_angle_error.norm(); // display statistics cout << "Position error:" << current_position_error << "\t " << "Angular error:" << current_orientation_error << "\n"; fprintf(fp_out, "%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f\n", output_time, gtsam_position(0), gtsam_position(1), gtsam_position(2), gtsam_quat.x(), gtsam_quat.y(), gtsam_quat.z(), gtsam_quat.w(), gps(0), gps(1), gps(2), gps_quat.x(), gps_quat.y(), gps_quat.z(), gps_quat.w()); output_time += 1.0; } else { cerr << "ERROR parsing file\n"; return 1; } } fclose(fp_out); cout << "Complete, results written to " << output_filename << "\n\n"; return 0; }