/** * @file PriorFactor.h * @authors Frank Dellaert **/ #pragma once #include #include #include #include namespace gtsam { /** * A class for a soft prior on any Lie type * It takes three template parameters: * T is the Lie group type for which the prior is define * Key (typically TypedSymbol) is used to look up T's in a Values * Values where the T's are stored, typically LieValues or a TupleValues<...> * The Key type is not arbitrary: we need to cast to a Symbol at linearize, so * a simple type like int will not work */ template class PriorFactor: public NonlinearFactor1 { public: typedef typename Key::Value T; private: typedef NonlinearFactor1 Base; T prior_; /** The measurement */ public: // shorthand for a smart pointer to a factor typedef typename boost::shared_ptr shared_ptr; /** Constructor */ PriorFactor(const Key& key, const T& prior, const SharedGaussian& model) : Base(model, key), prior_(prior) { } /** implement functions needed for Testable */ /** print */ void print(const std::string& s) const { Base::print(s); prior_.print("prior"); } /** equals */ bool equals(const NonlinearFactor& expected, double tol) const { const PriorFactor *e = dynamic_cast*> (&expected); return e != NULL && Base::equals(expected, tol) && this->prior_.equals( e->prior_, tol); } /** implement functions needed to derive from Factor */ /** vector of errors */ Vector evaluateError(const T& p, boost::optional H = boost::none) const { if (H) (*H) = eye(p.dim()); // manifold equivalent of h(x)-z -> log(z,h(x)) return prior_.logmap(p); } }; } /// namespace gtsam