import unittest from gtsam import * from math import * import numpy as np from gtsam_utils import Vector, Matrix class TestStereoVOExample(unittest.TestCase): def test_StereoVOExample(self): ## Assumptions # - For simplicity this example is in the camera's coordinate frame # - X: right, Y: down, Z: forward # - Pose x1 is at the origin, Pose 2 is 1 meter forward (along Z-axis) # - x1 is fixed with a constraint, x2 is initialized with noisy values # - No noise on measurements ## Create keys for variables x1 = symbol(ord('x'),1) x2 = symbol(ord('x'),2) l1 = symbol(ord('l'),1) l2 = symbol(ord('l'),2) l3 = symbol(ord('l'),3) ## Create graph container and add factors to it graph = NonlinearFactorGraph() ## add a constraint on the starting pose first_pose = Pose3() graph.add(NonlinearEqualityPose3(x1, first_pose)) ## Create realistic calibration and measurement noise model # format: fx fy skew cx cy baseline K = Cal3_S2Stereo(1000, 1000, 0, 320, 240, 0.2) stereo_model = noiseModel_Diagonal.Sigmas(Vector([1.0, 1.0, 1.0])) ## Add measurements # pose 1 graph.add(GenericStereoFactor3D(StereoPoint2(520, 480, 440), stereo_model, x1, l1, K)) graph.add(GenericStereoFactor3D(StereoPoint2(120, 80, 440), stereo_model, x1, l2, K)) graph.add(GenericStereoFactor3D(StereoPoint2(320, 280, 140), stereo_model, x1, l3, K)) #pose 2 graph.add(GenericStereoFactor3D(StereoPoint2(570, 520, 490), stereo_model, x2, l1, K)) graph.add(GenericStereoFactor3D(StereoPoint2( 70, 20, 490), stereo_model, x2, l2, K)) graph.add(GenericStereoFactor3D(StereoPoint2(320, 270, 115), stereo_model, x2, l3, K)) ## Create initial estimate for camera poses and landmarks initialEstimate = Values() initialEstimate.insert(x1, first_pose) # noisy estimate for pose 2 initialEstimate.insert(x2, Pose3(Rot3(), Point3(0.1,-.1,1.1))) expected_l1 = Point3( 1, 1, 5) initialEstimate.insert(l1, expected_l1) initialEstimate.insert(l2, Point3(-1, 1, 5)) initialEstimate.insert(l3, Point3( 0,-.5, 5)) ## optimize optimizer = LevenbergMarquardtOptimizer(graph, initialEstimate) result = optimizer.optimize() ## check equality for the first pose and point pose_x1 = result.atPose3(x1) self.assertTrue(pose_x1.equals(first_pose,1e-4)) point_l1 = result.atPoint3(l1) self.assertTrue(point_l1.equals(expected_l1,1e-4)) if __name__ == "__main__": unittest.main()