import unittest from gtsam import * from gtsam_utils import * from math import * import numpy as np class TestLocalizationExample(unittest.TestCase): def test_LocalizationExample(self): # Create the graph (defined in pose2SLAM.h, derived from # NonlinearFactorGraph) graph = NonlinearFactorGraph() # Add two odometry factors # create a measurement for both factors (the same in this case) odometry = Pose2(2.0, 0.0, 0.0) odometryNoise = noiseModel_Diagonal.Sigmas( np.array([0.2, 0.2, 0.1])) # 20cm std on x,y, 0.1 rad on theta graph.add(BetweenFactorPose2(0, 1, odometry, odometryNoise)) graph.add(BetweenFactorPose2(1, 2, odometry, odometryNoise)) # Add three "GPS" measurements # We use Pose2 Priors here with high variance on theta groundTruth = Values() groundTruth.insert(0, Pose2(0.0, 0.0, 0.0)) groundTruth.insert(1, Pose2(2.0, 0.0, 0.0)) groundTruth.insert(2, Pose2(4.0, 0.0, 0.0)) model = noiseModel_Diagonal.Sigmas(np.array([0.1, 0.1, 10.])) for i in range(3): graph.add(PriorFactorPose2(i, groundTruth.atPose2(i), model)) # Initialize to noisy points initialEstimate = Values() initialEstimate.insert(0, Pose2(0.5, 0.0, 0.2)) initialEstimate.insert(1, Pose2(2.3, 0.1, -0.2)) initialEstimate.insert(2, Pose2(4.1, 0.1, 0.1)) # Optimize using Levenberg-Marquardt optimization with an ordering from # colamd optimizer = LevenbergMarquardtOptimizer(graph, initialEstimate) result = optimizer.optimizeSafely() # Plot Covariance Ellipses marginals = Marginals(graph, result) P = [None] * result.size() for i in range(0, result.size()): pose_i = result.atPose2(i) self.assertTrue(pose_i.equals(groundTruth.atPose2(i), 1e-4)) P[i] = marginals.marginalCovariance(i) if __name__ == "__main__": unittest.main()