/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file testNonlinearFactor.cpp * @brief Unit tests for Non-Linear Factor, * create a non linear factor graph and a values structure for it and * calculate the error for the factor. * @author Christian Potthast **/ /*STL/C++*/ #include #include // TODO: DANGEROUS, create shared pointers #define GTSAM_MAGIC_GAUSSIAN 2 #define GTSAM_MAGIC_KEY #include #include #include #include #include using namespace std; using namespace gtsam; using namespace example; typedef boost::shared_ptr > shared_nlf; /* ************************************************************************* */ TEST( NonlinearFactor, equals ) { SharedGaussian sigma(noiseModel::Isotropic::Sigma(2,1.0)); // create two nonlinear2 factors Point2 z3(0.,-1.); simulated2D::Measurement f0(z3, sigma, 1,1); // measurement between x2 and l1 Point2 z4(-1.5, -1.); simulated2D::Measurement f1(z4, sigma, 2,1); CHECK(assert_equal(f0,f0)); CHECK(f0.equals(f0)); CHECK(!f0.equals(f1)); CHECK(!f1.equals(f0)); } /* ************************************************************************* */ TEST( NonlinearFactor, equals2 ) { // create a non linear factor graph Graph fg = createNonlinearFactorGraph(); // get two factors Graph::sharedFactor f0 = fg[0], f1 = fg[1]; CHECK(f0->equals(*f0)); // SL-FIX CHECK(!f0->equals(*f1)); // SL-FIX CHECK(!f1->equals(*f0)); } /* ************************************************************************* */ TEST( NonlinearFactor, NonlinearFactor ) { // create a non linear factor graph Graph fg = createNonlinearFactorGraph(); // create a values structure for the non linear factor graph Values cfg = createNoisyValues(); // get the factor "f1" from the factor graph Graph::sharedFactor factor = fg[0]; // calculate the error_vector from the factor "f1" // the expected value for the whitened error from the factor // error_vector / sigma = [0.1 0.1]/0.1 = [1;1] Vector actual_e = factor->whitenedError(cfg); CHECK(assert_equal(ones(2),actual_e)); // error = 0.5 * [1 1] * [1;1] = 1 double expected = 1.0; // calculate the error from the factor "f1" double actual = factor->error(cfg); DOUBLES_EQUAL(expected,actual,0.00000001); } /* ************************************************************************* */ TEST( NonlinearFactor, linearize_f1 ) { Values c = createNoisyValues(); // Grab a non-linear factor Graph nfg = createNonlinearFactorGraph(); Graph::sharedFactor nlf = nfg[0]; // We linearize at noisy config from SmallExample GaussianFactor::shared_ptr actual = nlf->linearize(c, *c.orderingArbitrary()); GaussianFactorGraph lfg = createGaussianFactorGraph(*c.orderingArbitrary()); GaussianFactor::shared_ptr expected = lfg[0]; CHECK(assert_equal(*expected,*actual)); // The error |A*dx-b| approximates (h(x0+dx)-z) = -error_vector // Hence i.e., b = approximates z-h(x0) = error_vector(x0) //CHECK(assert_equal(nlf->error_vector(c),actual->get_b())); } /* ************************************************************************* */ TEST( NonlinearFactor, linearize_f2 ) { Values c = createNoisyValues(); // Grab a non-linear factor Graph nfg = createNonlinearFactorGraph(); Graph::sharedFactor nlf = nfg[1]; // We linearize at noisy config from SmallExample GaussianFactor::shared_ptr actual = nlf->linearize(c, *c.orderingArbitrary()); GaussianFactorGraph lfg = createGaussianFactorGraph(*c.orderingArbitrary()); GaussianFactor::shared_ptr expected = lfg[1]; CHECK(assert_equal(*expected,*actual)); } /* ************************************************************************* */ TEST( NonlinearFactor, linearize_f3 ) { // Grab a non-linear factor Graph nfg = createNonlinearFactorGraph(); Graph::sharedFactor nlf = nfg[2]; // We linearize at noisy config from SmallExample Values c = createNoisyValues(); GaussianFactor::shared_ptr actual = nlf->linearize(c, *c.orderingArbitrary()); GaussianFactorGraph lfg = createGaussianFactorGraph(*c.orderingArbitrary()); GaussianFactor::shared_ptr expected = lfg[2]; CHECK(assert_equal(*expected,*actual)); } /* ************************************************************************* */ TEST( NonlinearFactor, linearize_f4 ) { // Grab a non-linear factor Graph nfg = createNonlinearFactorGraph(); Graph::sharedFactor nlf = nfg[3]; // We linearize at noisy config from SmallExample Values c = createNoisyValues(); GaussianFactor::shared_ptr actual = nlf->linearize(c, *c.orderingArbitrary()); GaussianFactorGraph lfg = createGaussianFactorGraph(*c.orderingArbitrary()); GaussianFactor::shared_ptr expected = lfg[3]; CHECK(assert_equal(*expected,*actual)); } /* ************************************************************************* */ TEST( NonlinearFactor, size ) { // create a non linear factor graph Graph fg = createNonlinearFactorGraph(); // create a values structure for the non linear factor graph Values cfg = createNoisyValues(); // get some factors from the graph Graph::sharedFactor factor1 = fg[0], factor2 = fg[1], factor3 = fg[2]; CHECK(factor1->size() == 1); CHECK(factor2->size() == 2); CHECK(factor3->size() == 2); } /* ************************************************************************* */ TEST( NonlinearFactor, linearize_constraint1 ) { Vector sigmas = Vector_(2, 0.2, 0.0); SharedDiagonal constraint = noiseModel::Constrained::MixedSigmas(sigmas); Point2 mu(1., -1.); Graph::sharedFactor f0(new simulated2D::Prior(mu, constraint, 1)); Values config; config.insert(simulated2D::PoseKey(1), Point2(1.0, 2.0)); GaussianFactor::shared_ptr actual = f0->linearize(config, *config.orderingArbitrary()); // create expected Ordering ord(*config.orderingArbitrary()); Vector b = Vector_(2, 0., -3.); JacobianFactor expected(ord["x1"], eye(2), b, constraint); CHECK(assert_equal((const GaussianFactor&)expected, *actual)); } /* ************************************************************************* */ TEST( NonlinearFactor, linearize_constraint2 ) { Vector sigmas = Vector_(2, 0.2, 0.0); SharedDiagonal constraint = noiseModel::Constrained::MixedSigmas(sigmas); Point2 z3(1.,-1.); simulated2D::Measurement f0(z3, constraint, 1,1); Values config; config.insert(simulated2D::PoseKey(1), Point2(1.0, 2.0)); config.insert(simulated2D::PointKey(1), Point2(5.0, 4.0)); GaussianFactor::shared_ptr actual = f0.linearize(config, *config.orderingArbitrary()); // create expected Ordering ord(*config.orderingArbitrary()); Vector b = Vector_(2, -3., -3.); JacobianFactor expected(ord["x1"], -1*eye(2), ord["l1"], eye(2), b, constraint); CHECK(assert_equal((const GaussianFactor&)expected, *actual)); } /* ************************************************************************* */ int main() { TestResult tr; return TestRegistry::runAllTests(tr);} /* ************************************************************************* */