%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % GTSAM Copyright 2010, Georgia Tech Research Corporation, % Atlanta, Georgia 30332-0415 % All Rights Reserved % Authors: Frank Dellaert, et al. (see THANKS for the full author list) % % See LICENSE for the license information % % @brief Read graph from file and perform GraphSLAM % @author Frank Dellaert %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Initialize graph, initial estimate, and odometry noise import gtsam.* model = noiseModel.Diagonal.Sigmas([0.05; 0.05; 5*pi/180]); maxID = 0; addNoise = false; smart = true; [graph,initial]=load2D('Data/w100-odom.graph',model,maxID,addNoise,smart); initial.print(sprintf('Initial estimate:\n')); %% Add a Gaussian prior on pose x_1 import gtsam.* priorMean = Pose2(0.0, 0.0, 0.0); % prior mean is at origin priorNoise = noiseModel.Diagonal.Sigmas([0.01; 0.01; 0.01]); graph.addPosePrior(0, priorMean, priorNoise); % add directly to graph %% Plot Initial Estimate figure(1);clf P=initial.poses; plot(P(:,1),P(:,2),'g-*'); axis equal %% Optimize using Levenberg-Marquardt optimization with an ordering from colamd result = graph.optimize(initial,1); P=result.poses; hold on; plot(P(:,1),P(:,2),'b-*') result.print(sprintf('\nFinal result:\n')); %% Plot Covariance Ellipses marginals = graph.marginals(result); P={}; for i=1:result.size()-1 pose_i = result.pose(i); P{i}=marginals.marginalCovariance(i); plotPose2(pose_i,'b',P{i}) end fprintf(1,'%.5f %.5f %.5f\n',P{99})