/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file Pose2SLAMExample_advanced.cpp * @brief Simple Pose2SLAM Example using * pre-built pose2SLAM domain * @author Chris Beall */ // pull in the Pose2 SLAM domain with all typedefs and helper functions defined #include #include #include #include #include #include #include #include using namespace std; using namespace gtsam; int main(int argc, char** argv) { /* 1. create graph container and add factors to it */ pose2SLAM::Graph graph; /* 2.a add prior */ // gaussian for prior SharedDiagonal prior_model = noiseModel::Diagonal::Sigmas(Vector_(3, 0.3, 0.3, 0.1)); Pose2 prior_measurement(0.0, 0.0, 0.0); // prior at origin graph.addPrior(1, prior_measurement, prior_model); // add directly to graph /* 2.b add odometry */ // general noisemodel for odometry SharedDiagonal odom_model = noiseModel::Diagonal::Sigmas(Vector_(3, 0.2, 0.2, 0.1)); /* Pose2 measurements take (x,y,theta), where theta is taken from the positive x-axis*/ Pose2 odom_measurement(2.0, 0.0, 0.0); // create a measurement for both factors (the same in this case) graph.addOdometry(1, 2, odom_measurement, odom_model); graph.addOdometry(2, 3, odom_measurement, odom_model); graph.print("full graph"); /* 3. Create the data structure to hold the initial estimate to the solution * initialize to noisy points */ pose2SLAM::Values initial; initial.insertPose(1, Pose2(0.5, 0.0, 0.2)); initial.insertPose(2, Pose2(2.3, 0.1,-0.2)); initial.insertPose(3, Pose2(4.1, 0.1, 0.1)); initial.print("initial estimate"); /* 4.2.1 Alternatively, you can go through the process step by step * Choose an ordering */ Ordering ordering = *graph.orderingCOLAMD(initial); /* 4.2.2 set up solver and optimize */ LevenbergMarquardtParams params; params.absoluteErrorTol = 1e-15; params.relativeErrorTol = 1e-15; params.ordering = ordering; LevenbergMarquardtOptimizer optimizer(graph, initial, params); pose2SLAM::Values result = optimizer.optimize(); result.print("final result"); /* Get covariances */ Marginals marginals(graph, result, Marginals::CHOLESKY); Matrix covariance1 = marginals.marginalCovariance(1); Matrix covariance2 = marginals.marginalCovariance(2); print(covariance1, "Covariance1"); print(covariance2, "Covariance2"); return 0; }