/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file LocalizationExample.cpp * @brief Simple robot localization example * @author Frank Dellaert */ // pull in the 2D PoseSLAM domain with all typedefs and helper functions defined #include // include this for marginals #include #include #include using namespace std; using namespace gtsam; /** * Example of a simple 2D localization example * - Robot poses are facing along the X axis (horizontal, to the right in 2D) * - The robot moves 2 meters each step * - We have full odometry between poses */ int main(int argc, char** argv) { // create the graph (defined in pose2SLAM.h, derived from NonlinearFactorGraph) pose2SLAM::Graph graph; // add a Gaussian prior on pose x_1 Pose2 priorMean(0.0, 0.0, 0.0); // prior mean is at origin SharedDiagonal priorNoise(Vector_(3, 0.3, 0.3, 0.1)); // 30cm std on x,y, 0.1 rad on theta graph.addPrior(1, priorMean, priorNoise); // add directly to graph // add two odometry factors Pose2 odometry(2.0, 0.0, 0.0); // create a measurement for both factors (the same in this case) SharedDiagonal odometryNoise(Vector_(3, 0.2, 0.2, 0.1)); // 20cm std on x,y, 0.1 rad on theta graph.addOdometry(1, 2, odometry, odometryNoise); graph.addOdometry(2, 3, odometry, odometryNoise); // print graph.print("\nFactor graph:\n"); // create (deliberatly inaccurate) initial estimate pose2SLAM::Values initialEstimate; initialEstimate.insertPose(1, Pose2(0.5, 0.0, 0.2)); initialEstimate.insertPose(2, Pose2(2.3, 0.1,-0.2)); initialEstimate.insertPose(3, Pose2(4.1, 0.1, 0.1)); initialEstimate.print("\nInitial estimate:\n "); // optimize using Levenberg-Marquardt optimization with an ordering from colamd pose2SLAM::Values result = graph.optimize(initialEstimate); result.print("\nFinal result:\n "); // Query the marginals Marginals marginals = graph.marginals(result); cout.precision(2); cout << "\nP1:\n" << marginals.marginalCovariance(1) << endl; cout << "\nP2:\n" << marginals.marginalCovariance(2) << endl; cout << "\nP3:\n" << marginals.marginalCovariance(3) << endl; return 0; }