/** * Matlab toolbox interface definition for gtsam_unstable */ // specify the classes from gtsam we are using virtual class gtsam::Value; virtual class gtsam::LieScalar; virtual class gtsam::Point2; virtual class gtsam::Rot2; virtual class gtsam::Pose2; virtual class gtsam::Point3; virtual class gtsam::Rot3; virtual class gtsam::Pose3; virtual class gtsam::noiseModel::Base; virtual class gtsam::NonlinearFactor; virtual class gtsam::GaussianFactor; virtual class gtsam::HessianFactor; virtual class gtsam::JacobianFactor; class gtsam::GaussianFactorGraph; class gtsam::NonlinearFactorGraph; class gtsam::Ordering; class gtsam::Values; class gtsam::KeySet; class gtsam::KeyVector; namespace gtsam { #include class Dummy { Dummy(); void print(string s) const; unsigned char dummyTwoVar(unsigned char a) const; }; #include virtual class PoseRTV : gtsam::Value { PoseRTV(); PoseRTV(Vector rtv); PoseRTV(const gtsam::Point3& pt, const gtsam::Rot3& rot, const gtsam::Point3& vel); PoseRTV(const gtsam::Rot3& rot, const gtsam::Point3& pt, const gtsam::Point3& vel); PoseRTV(const gtsam::Pose3& pose, const gtsam::Point3& vel); PoseRTV(const gtsam::Pose3& pose); PoseRTV(double roll, double pitch, double yaw, double x, double y, double z, double vx, double vy, double vz); // testable bool equals(const gtsam::PoseRTV& other, double tol) const; void print(string s) const; // access gtsam::Point3 translation() const; gtsam::Rot3 rotation() const; gtsam::Point3 velocity() const; gtsam::Pose3 pose() const; // Vector interfaces Vector vector() const; Vector translationVec() const; Vector velocityVec() const; // manifold/Lie static size_t Dim(); size_t dim() const; gtsam::PoseRTV retract(Vector v) const; Vector localCoordinates(const gtsam::PoseRTV& p) const; static gtsam::PoseRTV Expmap(Vector v); static Vector Logmap(const gtsam::PoseRTV& p); gtsam::PoseRTV inverse() const; gtsam::PoseRTV compose(const gtsam::PoseRTV& p) const; gtsam::PoseRTV between(const gtsam::PoseRTV& p) const; // measurement double range(const gtsam::PoseRTV& other) const; gtsam::PoseRTV transformed_from(const gtsam::Pose3& trans) const; // IMU/dynamics gtsam::PoseRTV planarDynamics(double vel_rate, double heading_rate, double max_accel, double dt) const; gtsam::PoseRTV flyingDynamics(double pitch_rate, double heading_rate, double lift_control, double dt) const; gtsam::PoseRTV generalDynamics(Vector accel, Vector gyro, double dt) const; Vector imuPrediction(const gtsam::PoseRTV& x2, double dt) const; gtsam::Point3 translationIntegration(const gtsam::PoseRTV& x2, double dt) const; Vector translationIntegrationVec(const gtsam::PoseRTV& x2, double dt) const; }; #include virtual class Pose3Upright : gtsam::Value { Pose3Upright(); Pose3Upright(const gtsam::Pose3Upright& x); Pose3Upright(const gtsam::Rot2& bearing, const gtsam::Point3& t); Pose3Upright(double x, double y, double z, double theta); Pose3Upright(const gtsam::Pose2& pose, double z); void print(string s) const; bool equals(const gtsam::Pose3Upright& pose, double tol) const; double x() const; double y() const; double z() const; double theta() const; gtsam::Point2 translation2() const; gtsam::Point3 translation() const; gtsam::Rot2 rotation2() const; gtsam::Rot3 rotation() const; gtsam::Pose2 pose2() const; gtsam::Pose3 pose() const; size_t dim() const; gtsam::Pose3Upright retract(Vector v) const; Vector localCoordinates(const gtsam::Pose3Upright& p2) const; static gtsam::Pose3Upright identity(); gtsam::Pose3Upright inverse() const; gtsam::Pose3Upright compose(const gtsam::Pose3Upright& p2) const; gtsam::Pose3Upright between(const gtsam::Pose3Upright& p2) const; static gtsam::Pose3Upright Expmap(Vector xi); static Vector Logmap(const gtsam::Pose3Upright& p); }; // \class Pose3Upright #include virtual class BearingS2 : gtsam::Value { BearingS2(); BearingS2(double azimuth, double elevation); BearingS2(const gtsam::Rot2& azimuth, const gtsam::Rot2& elevation); gtsam::Rot2 azimuth() const; gtsam::Rot2 elevation() const; static gtsam::BearingS2 fromDownwardsObservation(const gtsam::Pose3& A, const gtsam::Point3& B); static gtsam::BearingS2 fromForwardObservation(const gtsam::Pose3& A, const gtsam::Point3& B); void print(string s) const; bool equals(const gtsam::BearingS2& x, double tol) const; size_t dim() const; gtsam::BearingS2 retract(Vector v) const; Vector localCoordinates(const gtsam::BearingS2& p2) const; }; // std::vector class Point2Vector { //Capacity size_t size() const; size_t max_size() const; void resize(size_t sz); size_t capacity() const; bool empty() const; void reserve(size_t n); //Element access gtsam::Point2 at(size_t n) const; gtsam::Point2 front() const; gtsam::Point2 back() const; //Modifiers void assign(size_t n, const gtsam::Point2& u); void push_back(const gtsam::Point2& x); void pop_back(); }; #include class SimWall2D { SimWall2D(); SimWall2D(const gtsam::Point2& a, const gtsam::Point2& b); SimWall2D(double ax, double ay, double bx, double by); void print(string s) const; bool equals(const gtsam::SimWall2D& other, double tol) const; gtsam::Point2 a() const; gtsam::Point2 b() const; gtsam::SimWall2D scale(double s) const; double length() const; gtsam::Point2 midpoint() const; bool intersects(const gtsam::SimWall2D& wall) const; // bool intersects(const gtsam::SimWall2D& wall, boost::optional pt=boost::none) const; gtsam::Point2 norm() const; gtsam::Rot2 reflection(const gtsam::Point2& init, const gtsam::Point2& intersection) const; }; #include class SimPolygon2D { static void seedGenerator(size_t seed); static gtsam::SimPolygon2D createTriangle(const gtsam::Point2& pA, const gtsam::Point2& pB, const gtsam::Point2& pC); static gtsam::SimPolygon2D createRectangle(const gtsam::Point2& p, double height, double width); static gtsam::SimPolygon2D randomTriangle(double side_len, double mean_side_len, double sigma_side_len, double min_vertex_dist, double min_side_len, const gtsam::SimPolygon2DVector& existing_polys); static gtsam::SimPolygon2D randomRectangle(double side_len, double mean_side_len, double sigma_side_len, double min_vertex_dist, double min_side_len, const gtsam::SimPolygon2DVector& existing_polys); gtsam::Point2 landmark(size_t i) const; size_t size() const; gtsam::Point2Vector vertices() const; bool equals(const gtsam::SimPolygon2D& p, double tol) const; void print(string s) const; gtsam::SimWall2DVector walls() const; bool contains(const gtsam::Point2& p) const; bool overlaps(const gtsam::SimPolygon2D& p) const; static bool anyContains(const gtsam::Point2& p, const gtsam::SimPolygon2DVector& obstacles); static bool anyOverlaps(const gtsam::SimPolygon2D& p, const gtsam::SimPolygon2DVector& obstacles); static bool insideBox(double s, const gtsam::Point2& p); static bool nearExisting(const gtsam::Point2Vector& S, const gtsam::Point2& p, double threshold); static gtsam::Point2 randomPoint2(double s); static gtsam::Rot2 randomAngle(); static double randomDistance(double mu, double sigma); static double randomDistance(double mu, double sigma, double min_dist); static gtsam::Point2 randomBoundedPoint2(double boundary_size, const gtsam::Point2Vector& landmarks, double min_landmark_dist); static gtsam::Point2 randomBoundedPoint2(double boundary_size, const gtsam::Point2Vector& landmarks, const gtsam::SimPolygon2DVector& obstacles, double min_landmark_dist); static gtsam::Point2 randomBoundedPoint2(double boundary_size, const gtsam::SimPolygon2DVector& obstacles); static gtsam::Point2 randomBoundedPoint2( const gtsam::Point2& LL_corner, const gtsam::Point2& UR_corner, const gtsam::Point2Vector& landmarks, const gtsam::SimPolygon2DVector& obstacles, double min_landmark_dist); static gtsam::Pose2 randomFreePose(double boundary_size, const gtsam::SimPolygon2DVector& obstacles); }; // std::vector class SimWall2DVector { //Capacity size_t size() const; size_t max_size() const; void resize(size_t sz); size_t capacity() const; bool empty() const; void reserve(size_t n); //Element access gtsam::SimWall2D at(size_t n) const; gtsam::SimWall2D front() const; gtsam::SimWall2D back() const; //Modifiers void assign(size_t n, const gtsam::SimWall2D& u); void push_back(const gtsam::SimWall2D& x); void pop_back(); }; // std::vector class SimPolygon2DVector { //Capacity size_t size() const; size_t max_size() const; void resize(size_t sz); size_t capacity() const; bool empty() const; void reserve(size_t n); //Element access gtsam::SimPolygon2D at(size_t n) const; gtsam::SimPolygon2D front() const; gtsam::SimPolygon2D back() const; //Modifiers void assign(size_t n, const gtsam::SimPolygon2D& u); void push_back(const gtsam::SimPolygon2D& x); void pop_back(); }; // Nonlinear factors from gtsam, for our Value types #include template virtual class PriorFactor : gtsam::NonlinearFactor { PriorFactor(size_t key, const T& prior, const gtsam::noiseModel::Base* noiseModel); }; #include template virtual class BetweenFactor : gtsam::NonlinearFactor { BetweenFactor(size_t key1, size_t key2, const T& relativePose, const gtsam::noiseModel::Base* noiseModel); }; #include template virtual class RangeFactor : gtsam::NonlinearFactor { RangeFactor(size_t key1, size_t key2, double measured, const gtsam::noiseModel::Base* noiseModel); }; typedef gtsam::RangeFactor RangeFactorRTV; #include template virtual class NonlinearEquality : gtsam::NonlinearFactor { // Constructor - forces exact evaluation NonlinearEquality(size_t j, const T& feasible); // Constructor - allows inexact evaluation NonlinearEquality(size_t j, const T& feasible, double error_gain); }; #include template virtual class IMUFactor : gtsam::NonlinearFactor { /** Standard constructor */ IMUFactor(Vector accel, Vector gyro, double dt, size_t key1, size_t key2, const gtsam::noiseModel::Base* model); /** Full IMU vector specification */ IMUFactor(Vector imu_vector, double dt, size_t key1, size_t key2, const gtsam::noiseModel::Base* model); Vector gyro() const; Vector accel() const; Vector z() const; size_t key1() const; size_t key2() const; }; #include template virtual class FullIMUFactor : gtsam::NonlinearFactor { /** Standard constructor */ FullIMUFactor(Vector accel, Vector gyro, double dt, size_t key1, size_t key2, const gtsam::noiseModel::Base* model); /** Single IMU vector - imu = [accel, gyro] */ FullIMUFactor(Vector imu, double dt, size_t key1, size_t key2, const gtsam::noiseModel::Base* model); Vector gyro() const; Vector accel() const; Vector z() const; size_t key1() const; size_t key2() const; }; #include virtual class DHeightPrior : gtsam::NonlinearFactor { DHeightPrior(size_t key, double height, const gtsam::noiseModel::Base* model); }; virtual class DRollPrior : gtsam::NonlinearFactor { /** allows for explicit roll parameterization - uses canonical coordinate */ DRollPrior(size_t key, double wx, const gtsam::noiseModel::Base* model); /** Forces roll to zero */ DRollPrior(size_t key, const gtsam::noiseModel::Base* model); }; virtual class VelocityPrior : gtsam::NonlinearFactor { VelocityPrior(size_t key, Vector vel, const gtsam::noiseModel::Base* model); }; virtual class DGroundConstraint : gtsam::NonlinearFactor { // Primary constructor allows for variable height of the "floor" DGroundConstraint(size_t key, double height, const gtsam::noiseModel::Base* model); // Fully specify vector - use only for debugging DGroundConstraint(size_t key, Vector constraint, const gtsam::noiseModel::Base* model); }; #include #include virtual class VelocityConstraint3 : gtsam::NonlinearFactor { /** Standard constructor */ VelocityConstraint3(size_t key1, size_t key2, size_t velKey, double dt); Vector evaluateError(const gtsam::LieScalar& x1, const gtsam::LieScalar& x2, const gtsam::LieScalar& v) const; }; //************************************************************************* // nonlinear //************************************************************************* #include gtsam::GaussianFactorGraph* summarizeGraphSequential( const gtsam::GaussianFactorGraph& full_graph, const gtsam::KeyVector& indices); gtsam::GaussianFactorGraph* summarizeGraphSequential( const gtsam::GaussianFactorGraph& full_graph, const gtsam::Ordering& ordering, const gtsam::KeySet& saved_keys); pair partialCholeskySummarization(const gtsam::NonlinearFactorGraph& graph, const gtsam::Values& values, const gtsam::KeySet& overlap_keys); //************************************************************************* // slam //************************************************************************* #include #include template virtual class PoseTranslationPrior : gtsam::NonlinearFactor { PoseTranslationPrior(size_t key, const POSE& pose_z, const gtsam::noiseModel::Base* noiseModel); }; typedef gtsam::PoseTranslationPrior PoseTranslationPrior2D; typedef gtsam::PoseTranslationPrior PoseTranslationPrior3D; #include template virtual class PoseRotationPrior : gtsam::NonlinearFactor { PoseRotationPrior(size_t key, const POSE& pose_z, const gtsam::noiseModel::Base* noiseModel); }; typedef gtsam::PoseRotationPrior PoseRotationPrior2D; typedef gtsam::PoseRotationPrior PoseRotationPrior3D; #include virtual class RelativeElevationFactor: gtsam::NonlinearFactor { RelativeElevationFactor(); RelativeElevationFactor(size_t poseKey, size_t pointKey, double measured, const gtsam::noiseModel::Base* model); double measured() const; void print(string s) const; }; #include virtual class DummyFactor : gtsam::NonlinearFactor { DummyFactor(size_t key1, size_t dim1, size_t key2, size_t dim2); }; } //\namespace gtsam